Download presentation
Presentation is loading. Please wait.
1
第5章 资金的时间价值
2
一个简单的决策 Don Simkowitz正考虑出售在阿拉斯加的一片空地。昨天,有人提出以1万美元购买。他正准备接受这一报价,又有一人报价11424美元,但是一年以后付款。他已弄清楚两个买主都是有诚意的,并且均有支付能力。如果你是他的财务顾问,你建议他选择哪个报价?(假如银行利率为12%)
3
财务经理经常面临比较成本和收益发生的期限和数额不同的各种方案。你认为应该接受哪个方案呢?
Cash flow-in (现金流入) 1 2 3 4 5 Time periods Cash flow-out (现金流出)
4
学习目标 了解复利及将来值与现值概念 计算将来值及现值 理解并计算年金的将来值及现值 了解名义利率与实际利率之间的关系并能计算实际利率
5
对于 今天的$10,000 和5年后的 $10,000,你将选择哪一个呢?
资金的时间价值 对于 今天的$10,000 和5年后的 $10,000,你将选择哪一个呢? 很显然, 是今天的 $10,000. 你已经承认了 资金的时间价值!!
6
什么是时间价值? 在不考虑风险因素和通货膨胀的条件下,只要将资金有目的地进行投资,资金会随着时间的推移而发生增值。因此,资金在不同的时间,其价值是不相等的 是不是所有的资金都具有时间价值呢? 运动的资金 PV FV 1 2 3 4 5 Today
7
如何考虑时间价值? 银行的存款利息 单利 复利 只就借(贷)的原始金额或本金支付利息
不仅借(贷)的本金要支付利息,而且前期的利息在下一期也计息.
8
银行计算利息的方式 单利 只就借(贷)的原始金额或本金支付利息 复利 不仅借(贷)的本金要支付利息,而且前期的利息在下一期也计息.
9
单利法计算利息 假定本金是 $100,利率是5%,按单利法计算5年后的本利和: SIMPLE INTEREST Year Principal
Interest on Interest Interest Earned Total Interest Earned 1 $100.00 $5.00 $0.00 2 $10.00 3 $15.00 4 $20.00 5 $25.00
10
单利法计算利息结果:
11
复利法计算利息 假定本金还是$100,利率也还是5%,按复利法计算5年后的本利和: COMPOUND INTEREST Year
Principal Simple Interest Interest on Interest Interest Earned Total Interest Earned 1 $100.00 $5.00 $0.00 2 $105.00 $0.25 $5.25 $10.25 3 $110.25 $0.51 $5.51 $15.76 4 $115.76 $0.79 $5.79 $21.55 5 $121.55 $1.08 $6.08 $27.63
12
复利法计算利息结果:
13
复利的威力
14
时间价值用复利方式计算 FVn = P0 (1+i)n 现在的一笔资金n年后的价值,我们称复利终值或将来值
FVn = P0 (FVIFi,n) -- 见表 I FVIFi,n—Future value interest factor of $1 at i% at the end of n periods
15
查表计算 I FVIFi,n 在书后可以查到.
16
例如: Julie Miller 想知道按 10% 的复利把$10,000存入银行, 5年后的终值是多少? FV5 0 1 2 3 4 5
10% $10,000 FV5
17
解: 用一般公式: FVn = P0 (1+i)n FV5 = $10,000 (1+ 0.10)5 = $16,105.10
查表 : FV5 = $10,000 (FVIF10%, 5) = $10,000 (1.611) = $16, [四舍五入]
18
Excel function FV
19
现值问题 5年后得到的10000元,相当于现在得到多少钱? 现值:将来(n年后)的一笔资金,它现在的 价值,我们称为复利现值或折现值
P V 公式: PV = FVn / (1+i)n PV = FVn (PVIFi,n) -- 见表 II PVIFi,n—Present value interest factor of $1 at i% for n periods
20
在《投资价值理论》(The Theory of Investment Value)一书中,威廉斯提出了一套以股利收入为计算基础,来计算股票真实价值的确切公式。这里,他首次引进折现(discounting)的观念。 把收入的观念倒过来想,由后往前推,不考虑你明年有多少钱、赚多少利息,而是看看把未来收入换算成現值之后,会比现在少了多少价值 他主张股票的真实价值等于其未来所有股利的现值 由于折现的观念过去少有人懂,它就流行起来,为投资人所爱用
21
查表 II PVIFi,n 在书后的表中可查到.
22
例如: Julie Miller 想知道如果按10% 的复利,5 年后的 $10,000 的现值是多少? 0 1 2 3 4 5 10%
10% $10,000 PV
23
解: 用公式: PV = FVn / (1+i)n PV = $10,000 / (1+ 0.10)5 = $6,209.21
查表: PV = $10,000 (PVIF10%, 5) = $10,000 (.621) = $6, [四舍五入]
24
现实生活中经常碰到: 抵押借款的偿还 保险金的支付 租赁费的支付 养老金的发放
25
年金分类 年金:一定期限内一系列相等金额的收款或付款项. 普通年金(后付年金): 收付款项发生在每年年末.
普通年金(后付年金): 收付款项发生在每年年末. 先付年金:收付款项发生在每年年初. 递延年金:收付款在递延期之后才发生。
26
Parts of an Annuity (普通年金第1年年末) $ $ $100 现在 相等现金流
27
普通年金终值 -- FVA 年末 n i% A A A A: 每年现金流 FVAn FVAn = A(1+i)n-1 + A(1+i)n A(1+i)1 + A(1+i)0
28
年金未来值公式的推导:
29
普通年金 -- FVA例 $3,215 = FVA3 0 1 2 3 4 7% $1,000 $1,000 $1,000 $1,070
年末 7% $1, $1, $1,000 $1,070 $1,145 FVA3 = $1,000(1.07) $1,000(1.07)1 + $1,000(1.07)0 = $1,145 + $1,070 + $1, = $3,215 $3,215 = FVA3
30
查表计算 III FVAn = A (FVIFAi%,n) FVA3 = $1,000 (FVIFA7%,3) = $1,000 (3.215) = $3,215
31
普通年金的偿债基金计算 普通年金的偿债基金系数 经济含义:
32
普通年金现值 -- PVA . . . PVAn = A/(1+i)1 + A/(1+i)2 + ... + A/(1+i)n PVAn
年末 n i% A A A A: 每年现金流 PVAn = A/(1+i)1 + A/(1+i)2 A/(1+i)n PVAn
33
普通年金现值 -- PVA例 年末 7% $1, $1, $1,000 $934.58 $873.44 $816.30 $2, = PVA3 PVA3 = $1,000/(1.07) $1,000/(1.07) $1,000/(1.07)3 = $ $ $ = $2,624.32
34
查表计算 PVAn = A (PVIFAi%,n) PVA3 = $1,000 (PVIFA7%,3) = $1,000 (2.624) = $2,624
35
普通年金的资金回收计算 普通年金的资金回收系数 经济含义:
36
三对倒数关系:
37
两对乘积关系:
38
解决资金时间价值问题的步骤 1. 全面阅读问题 2. 决定是PV 还是FV 3. 画一条时间轴 4. 将现金流的箭头标示在时间轴上
1. 全面阅读问题 2. 决定是PV 还是FV 3. 画一条时间轴 4. 将现金流的箭头标示在时间轴上 5. 决定问题是单个的现金流、年金或混合现金流 6. 年金的现值不等于项目的现值(记不变的东西) 7. 解决问题
39
混合现金流 Julie Miller 将得到现金流如下. 按10%折现的 P V是多少? 0 1 2 3 4 5 10%
10% $ $600 $400 $400 $100 PV0
40
单个现金流 10% $ $600 $400 $400 $100 $545.45 $495.87 $300.53 $273.21 $ $ = PV0
41
分组年金?(#1) 10% $ $600 $400 $400 $100 $1,041.60 $ $ $1, = PV0 [查表] $600(PVIFA10%,2) = $600(1.736) = $1,041.60 $400(PVIFA10%,2)(PVIF10%,2) = $400(1.736)(0.826) = $573.57 $100 (PVIF10%,5) = $100 (0.621) = $62.10
42
分组年金? (#2) PV0 = + $1677.30. + $400 $400 $400 $400 $200 $200 $100
$ $ $ $400 $1,268.00 PV0 = $ + $ $200 $347.20 + $100 $62.10
43
例: 某企业购买一大型设备,若货款现在一次付清需100万元;也可采用分期付款,从第二年年末到第四 年年末每年付款40万元。假设资金利率为10%,问该企业应选择何种付款方式?
44
方法一:选择“0”时刻 分期付款好于一次付款
45
方法二:选择“1”时刻
46
方法三:选择“4”时刻
47
方法四:比较“A”
48
Should you get your master degree?
Two years of work experience after college, you have to decide whether to get a master degree or not. Suppose you are earning $80,000/year before entering a business school and assume that the tuition costs are $20,000/year. Expected salary upon graduation is $ 100,000 and assume that you will receive your salary at the beginning of the year. You can invest money at 2%. Further assume that the first payment of $ 20,000 has to be made at the start of the program, the second payment one year later. Assume that you will work 20 years after graduation, and that the salary differential ($20,000) will continue through this period.
49
Time line of Cash Flow for getting your master degree
Year 2 Year 1 Year 3 Year 22 20000 100000 80000 Time line of Cash Flow for getting your master degree Time line of Cash Flow for NOT getting a master degree
50
假如…… 我将1000元存入银行,银行半年支付利息一次,银行的年利率还是7%,那么2年后我能从银行连本带利取多少钱出来?(或1000元2年后的价值是多少? 复利的频率(季度、月、日、小时、分钟、秒……)
51
计算一年内多次复利的时间价值 直接调整有关指标 将名义利率调整为实际利率(有效年利率),然后再按实际利率计算时间价值
给定的年利率叫做名义利率 每年只复利一次的利率叫做实际利率
52
调整有关指标 公式: FVn = PV(1 + [i/m])mn n: 期限 m: 每年复利次数 i: 名义年利率 FVn,m PV:
53
复利频率对时间价值的影响 Julie Miller 按年利率12%将 $1,000 投资 2 Years.
计息期是1年 FV2 = 1,000(1+ [.12/1])(1)(2) = 1,254.40 计息期是半年FV2 = 1,000(1+ [.12/2])(2)(2) = 1,262.48
54
复利频率的影响 季度 FV2 = 1,000(1+ [.12/4])(4)(2) = 1,266.77
55
实际年利率 设一年中复利次数为m, 名义年利率为i ,则实际年利率为: (1 + [ i / m ] )m - 1
56
例 某公司拟向银行贷款1500万元,借用5年后一次还清。甲银行贷款年利率为17%,按年计息;乙银行贷款年利率为16%,按月计息。问公司向哪家银行贷款较为经济? EAR = ( % / 12 ) = 17.23%>17% 向甲银行贷款较为经济。
57
10%简单年利率下计息次数与EAR之间的关系
连续复利: EAR = er-1 where e is
58
需要记住的: You ALWAYS need to make sure that the interest rate and the time period match. If you are looking at annual periods, you need an annual rate. If you are looking at monthly periods, you need a monthly rate. If you have an APR based on monthly compounding, you have to use monthly periods for lump sums, or adjust the interest rate appropriately if you have payments other than monthly
59
Pure Discount Loans Interest-Only Loans Amortized Loans 贷款类型和分期贷款
Three basic types of loans Pure Discount Loans Interest-Only Loans Amortized Loans
60
贷款类型和分期贷款 Pure Discount Loans: The borrower receives money today and repays a single lump sum at some time in the future. e.g. a Treasury Bill (or T-Bill for short) is a promise by the government to repay a fixed amount at some time in the future, generally short term 3 to 12 months. Treasury Bills are pure discount loans. If a T-Bill promises to repay $1,000 in 3 months and the market interest rate is 10% EAR, then what should be the market price for this T-Bill?
61
贷款类型和分期贷款 Interest-Only Loans: Borrow money today and pay interest only for a certain period of time and at the end of that period pay the original loan amount. Note that if there is only one period a pure discount loan and interest only loan are the same. Most government bonds are interest-only bonds. Amortized Loans: The borrower is required to repay parts of the principal amount over time. The process of making regular payments to reduce the principle is called amortizing the loan.
62
贷款类型和分期贷款 There are two special cases of loan amortization:
Equal payments of the principal By making equal payments of the principal, the principal is reduced by the same amount every period. However, the total payments per period change as the interest payments on the unpaid principal change. One needs to calculate the payment each period separately. Equal payments Both the principal and the interest payment change every period. However, the total payment per period is constant. One needs to calculate the payment once.
63
分期偿还贷款例 Julie Miller 向银行借 $10,000, 年利率 12%. 5年等额偿还. Step 1: 每年偿还额
PV0 = R (PVIFA i%,n) $10,000 = R (PVIFA 12%,5) $10,000 = R (3.605) R = $10,000 / = $2,774
64
分期偿还贷款例 [Last Payment Slightly Higher Due to Rounding]
65
分期偿还贷款的步骤 1. 计算 每期偿还额. 2. 计算第t期偿还的 利息. (第t-1 期的贷款余额) x (i% / m)
1. 计算 每期偿还额. 2. 计算第t期偿还的 利息. (第t-1 期的贷款余额) x (i% / m) 3. 计算第t期偿还的 本金. (每期偿还额 - 第2 步的利息) 4. 计算第t 期的贷款余额. (第t-1期的贷款余额- 第 3 步的本金偿还) 5. 从第2步起循环.
66
买房子!你准备好了吗? You are ready to buy a house which costs &900,000 and you have $180,000 for a down payment. You need to borrow $ 720,000 from the bank and promise to pay back the money on monthly mortgage payments. The interest rate on the loan is 6% per year with monthly compounding for a 20-year fixed rate loan. How much will you offer for the payment each month?
67
一个十分著名的永久年金例子:它就是一种被叫做金边债券的英国债券。一个购买金边债券的投资者有权永远每年都在英国政府领取利息
永久年金的现值计算: 一个十分著名的永久年金例子:它就是一种被叫做金边债券的英国债券。一个购买金边债券的投资者有权永远每年都在英国政府领取利息
68
稳定增长现金流量现值的计算:
69
小结: A sure dollar today is worth more than a sure dollar tomorrow.
The difference between simple interest and compound interest. The present value formula
70
小结:
71
小结: Three basic types of loans Pure Discount Loans Interest-Only Loans
Amortized Loans
72
练习: 为了支持子女将来上大学,某家庭计划在今后5年内每年年末存入500$,年利率为6%,第5年末可得到多少钱?
为了支持子女将来上大学,某家庭计划在孩子5岁生日开始到15岁生日为止每年存入一笔钱,等孩子18岁开始读大学时每年能从银行取10000元作为学习和生活的费用,那么该家庭在孩子5岁生日开始到15岁生日为止这段时间每年应存多少钱?设年利率为12%。 某人从银行贷款8万买房,年利率为4%,若在5年内还清,那么他每个月必须还多少钱才行? 某公司债券目前市价为$1100,还有10年到期,票面利率为9%,面值为$1000。问你以当前市价购买并持有到期的到期收益率是多少?
Similar presentations