Download presentation
Presentation is loading. Please wait.
1
复杂网络的社团结构分析 Community structure in complex networks
章祥荪 中国科学院 数学与系统科学研究院 全国复杂网络会议,苏州大学, 2010,10, 17
2
复杂网络的动态性质研究 复杂网络的静态结构研究
小世界(Small world) ,尺度无关(Scale free),聚 类特性 (Clustering) 的确切数学模型。 社团结构 (Community Structure) …………
3
复杂网络的模块化性质 复杂网络中存在模块或者社区结构 (Module or Community structure)
模块或者社区定义为网络中内部连接稠密,与外部连 接稀疏的节点的集合 (Filippo Radicchi et. al. PNAS, Vol.101, No.9, , 2004). 数学表述: 其中V是子图,K是顶点的度。即子图 V 是模块的条件是模块内 顶点的内部连边的度值之和大于模块内顶点的外部连边的度值之 和。 PNAS ---- Proc. Natl. Acad. Sci. USA 美国科学院院刊
4
模块划分的重要性 许多复杂网络共有的性质。 研究模块结构有助于研究整个网络的结构和功能
圣塔菲研究所的科学家合作网:模块代表从事相似领域研究的科学家集合 数学生态学 统计物理
5
自然科学论文引用网络:6128期刊, 约600万次引用, 划分为88个模块和3024条 模块间的连接,刻画了学科之间的联系
Martin Rosvall, Carl T. Bergstrom, PNAS, vol. 105, no , 2007 划分为88个模块和3024条 模块间的连接,刻画了学科之间的联系
6
一个社会网络的例子 W. W. Zachary, An information flow model for conflict and fission in small groups, Journal of Anthropological Research 33, 1970年美国大学里的一个空手道俱乐部关系网络:节点是其34名成员,边是他们两年间的友谊关系,边数为78。俱乐部里的矛盾导致其分裂为两个小的俱乐部。问题是能否用网络的模块结构来重现这个过程? 它是模块探测研究中的经典例子。 含义对不对?
7
Importance of the topic
Girvan, M, Newman, M., Proc. Natl. Acad. Sci, Ravasz, E, Somera, A, Mongru, D, Oltvai, Z, Barabasi, A., Science, Radicchi, F, Castellano, C, Cecconi, F., Proc. Natl. Acad. Sci, Guimera, R, Mossa, S, Turtschi, A., Proc. Natl. Acad. Sci, Guimera, R, Amaral, L., Nature, Newman, M., Proc. Natl. Acad. Sci, Rosvall, M, Bergstrom, C., Proc. Natl. Acad. Sci, Fortunato, S, Barthelemy, M., Proc. Natl. Acad. Sci, Weinan, E, Li, T, Vanden-Eijnden, E., Proc. Natl. Acad. Sci, Rosvall, M, Bergstrom, C., Proc. Natl. Acad. Sci, Peter J. Mucha, et al., Science Yong-Yeol Ahn, James P. Bagrow & Sune Lehmann,Nature, 生物信息学与最优化方法
8
社团结构探索方法概述 A large number of methods have been developed for detecting communities, which can be generally categorized into local and global methods. Local methods for community detection identify a subset of nodes as a community according to certain local connection conditions, independently from the structure of the rest of the network. Such methods include clique overlap-based hierarchical clustering, clique percolation method, and sub-graph fitness method. Global methods for community detection optimize certain global quantitative functions encoding the quality of the overall partition of the network, such as information theoretical method, Potts model, and optimization of modularity measures.
9
我们小组在研究这一问题的早期发展了一些基于图论和矩阵谱分解的模块探测算法 (local method)
Shihua Zhang, Rui-Sheng Wang, and Xiang-Sun Zhang. Identification of overlapping community structure in complex networks using fuzzy c-means Clustering. Physica A, 2007, 374, 483–490. Shihua Zhang, Rui-Sheng Wang and Xiang-Sun Zhang. Uncovering fuzzy community structure in complex networks. Physical Review E, 76, , 2007 Rui-Sheng Wang, Shihua Zhang, Yong Wang, Xiang-Sun Zhang, Luonan Chen. Clustering complex networks and biological networks by nonnegative matrix factorization with various similarity measures. Neurocomputing, 2007
10
衡量网络模块化的指标Q值 设网络为 N=(V,E), Pk = { (V1, E1), …, (Vk, Ek)} 为一个 分划。L(Vi, Vj) =|Eij|, i in Vi, j in Vj. Newman 和 Girvan (Physical Review E, 2004) 提出一种衡量 网络社区结构的指标 Q 值
11
指标Q的问题 (Resolution limit) Fortunato and Barthélemy, PNAS, 2007
目前很大一部分模块探测的方法集中于利用各种启 发式算法来极大化Q值 ,例如模拟退火、遗传算法 等(Newman, PNAS, 2006; Guimera, Nature, 2005). Resolution limit 现象
12
极端例子:ring of cliques Fortunato & Barthelemy, Proc. Natl. Acad. Sci. USA 104 (1), (2007)
13
提出新的模块化指标D值 模块化密度函数 D:
Zhenping Li, Shihua Zhang, Rui-Sheng Wang, Xiang-Sun Zhang, Luonan Chen, Quantitative function for community detection. Physical Review E, 77, , 2008
14
D值克服了Q值存在的 resolution limit 问题
15
结果 D值 划分正确的顶点的比例 Q值
16
错分现象---Misidentification
用Q或D作优化可能得到不满足定义的模块 Q partitions the network into three communities (two Kn and one K5) when n>=16 (respectively, n>=21), in which K5 is a sub-graph violating all reasonable community definition. Xiang-Sun Zhang, Rui-Sheng Wang, Yong Wang, Ji-Guang Wang, Yu-Qing Qiu, Lin Wang, and Luonan Chen. Modularity optimization in community detection of complex networks. Europhysics Letters (EPL), 87, 被评为 EPL 2009 best paper 16
17
该文的主要贡献是用离散凸规划的概念对两个重要问题进行解析分析
Q 值和D 值的最优化模型都是非线性整数规划 目标函数的凸性和凹性无法解析得到 对两个具有特殊结构的网络进行分析 引入离散凸规划(变量是离散的,可以嵌入一个连续的 凸规划)的概念进行分析, 得到解析解
18
所有对modularity进行研究的论文(指上面所列的 的PNAS,Nature,Sience文章)都是试题论证的,即 没有解析的证明.
为了彻底分析resolution limit和 Misidentification 现象,我们对两类典型网络建 立了优化模型,引入了离散凸分析技术,得到了两类 问题的解析解. 生物信息学与最优化方法
19
基于特殊结构的凸分析 这两个例子出现在PNAS中几乎所有讨论网络模块 探测的论文里 ring of dense lumps
ad hoc network
20
Finding 对
21
Finding 2 生物信息学与最优化方法
22
Finding 3 解析解表明,对这两个经典的算例,Q和D都有 Resolution limit和Misidentification的现象产生, 所以Q 和D均只是近似的定量评估函数。 网络社团划分的问题可以用一个优化问题来精确 描述,我们证明了这一模型是NP-hard的。 我们相信用优化理论可以彻底解决网络社团划分 的问题。网络科学是运筹学的下一个热点。
23
为了彻底解决这些问题 提出一个新的 OR 模型和相应的算法,这一算法不会产生 resolution limit 和 mis-identification 现象 Xiang-Sun Zhang, Zhenping Li, Rui-Sheng Wang, Yong Wang. A combinatorial model and algorithm for globally searching community structure in complex networks Journal of Combinatorial Optimization (JCO), DOI: /s
24
A new OR model Problem definition:
Given a network, the community identification problem is to partition the network into as many non-overlapping sub-networks as possible such that each sub-network satisfies a given community definition. 24
25
以上文字定义可以用一个整数线性规划来描述
我们证明了这个模型是 NP-hard . 25
26
A qualified min-cut (QMC) algorithm
A heuristic principle is given to find a feasible partition with the largest number of communities. It is realized by a min-cut operation: A min-cut operation is called qualified if the two resulting sub-networks satisfy the module definition. The community identification problem can be solved based on a series of qualified min-cut operations. 26
27
Experiment results (artificial networks)
Rings of cliques Uneven ad-hoc network 27
28
Experiment results (real networks)
Football team network Jazz musician network 28
29
谢谢大家! 欢迎访问 ZHANGroup, 本报告可在该网页上下载 29
Similar presentations