Download presentation
Presentation is loading. Please wait.
1
第七章 Genetic transformation in plant
2
目录 转基因技术现状及其应用 植物遗传转化技术 载体构建 遗传转化操作 转基因鉴定
3
第三节 载体构建
4
Transformation Cassettes
Contains 1. Gene of interest The coding region and its controlling elements 2. Selectable marker Distinguishes transformed/untransformed plants All transformation cassettes contain three regions. The “gene of interest” region contains the actual gene that is being introduced into the plant. This is the gene that provides the new function to the plant. In this diagram, the region is shown in red. Many plant tissues are treated with the transformation cassette during the transformation step. Not all of these tissues actually receive the cassette. To distinguish those that contain the gene from those that don’t, it is necessary to use a selection process. The selectable marker is a gene that provides the ability to distinguish transformed from non-transformed plants. This is shown by green. The most common method to introduce the transformation cassette is by using the plant pathogen Agrobacterium. For this system to work it is necessary that the cassette contain insertion sequences that are used by the bacteria. These are shown by the gray. 3. Insertion sequences Aids Agrobacterium insertion
5
Let’s Build A Complex Cassette
pB19hpc (Golden Rice Cassette) aphIV 35S Gt1 psy 35S rbcS crtl TL TR T-DNA Border Hygromycin Resistance Phytoene Synthase Phytoene Desaturase Insertion Sequence Selectable Marker Gene of Interest Gene of Interest This slide demonstrates one of the transformation cassettes used to develop “Golden Rice” was developed. Slowly click through this slide, and you will see each of the components of the cassette.
6
1. gene of interest Based on what you are doing and what you want to get Quality Stress tolerance Secondary metabolism
7
A cloning site for the gene of interest
8
2. Selectable marker Allows the transgenic plants to survive under stringent selection. Coding Region Gene that breaks down a toxic compound; non-transgenic plants die ex.: nptII [kanamycin (bacterial antibiotic) resistance] aphIV [hygromycin (bacterial antibiotic) resistance] Bar [glufosinate (herbicide) resistance]
9
X Effect of Selectable Marker Non-transgenic = Lacks Kan or Bar Gene
Plant dies in presence of selective compound X Transgenic = Has Kan or Bar Gene Plant grows in presence of selective compound This slide shows the effect of the selectable marker.
10
A selectable marker gene
抗性素类 kanamycin resistance, nptII hygromycin resistance, hpt 除草剂类 bar gene (for resistance to herbicide phosphinothricin)草胺膦 DHFR gene (for resistance to methotrexate)甲氨蝶呤 ESPS gene (for resistance to glyfosate)
11
常用抗生素抗性酶基因 新霉素磷酸转移酶基因(NPTII),抗卡那霉素 潮霉素磷酸转移酶基因(HPT),抗潮霉素(hygromycin)
12
nptⅡ基因 在植物基因工程中被广泛使用,来源于细菌转座子Tn5上的ahpA2。该基因编码氨基糖苷-3’-磷酸转移酶(aminnoglycoside3‘-phosphotransferaseⅡ)。 NptⅡ使ATP分子上的γ-磷酸基转移到抗生素分子上,影响抗生素与核糖体亚基的结合,从而使氨基糖苷类抗生素(新霉素、卡那霉素、庆大霉素、巴龙霉素和G418等)磷酸化失活。
13
HPT 潮霉素是一种很强的细胞生长抑制剂,对许多种植物都产生很高的毒性。
而潮霉素磷酸转移酶基因产物通过酶促磷酸化作用能使潮霉素失活,从而产生抗性。
14
常用抗除草剂基因 bar基因,产生PPT乙酰转移酶,抗Bialaphos或glufosinate草铵膦
EPSP基因,产生5-烯醇式丙酮酸莽草酸-3-磷酸合酶,抗glyphosate草甘磷 GOX基因,产生草甘膦氧化酶,降解草甘膦
15
3. Reporter genes: scorable marker gene
具有两大特点 (1)便于检测; (2)其表达产物及产物的类似功能在未转化的植物细胞内并不存在。 optional, but very useful
16
Reporter genes beta-glucuronidase activity (GUS)
green fluorescent protein (GFP) chloramphenicolacetyl transferase activity luciferase activity
17
Gus基因编码β-葡萄糖苷酸酶(β -glucuronidase,GUS),能催化许多β-葡萄糖苷脂类物质的水解。
18
GUS组织化学染色 以X-gluc(5-溴-4-氯-3-吲哚- β-D-葡萄糖苷酸脂)为底物,在适宜条件下,底物进入检测组织。
19
(2) 绿色荧光蛋白基因 GFP is a fluorescent protein isolated from Coelenterates, such as the Pacific jellyfish, Aequoria victoria, or from the sea pansy, Renilla reniformis. Osamu Shimomura was the first person to isolate GFP and to find out which part of GFP was responsible for its fluorescence.
20
gfp Its role is to transduce the blue chemiluminescence of the protein aequorin into green fluorescent light by energy transfer. The gene for GFP has been isolated and has become a useful tool for making chimeric proteins of GFP linked to other proteins where it functions as a fluorescent protein tag. 是一种活体标记。能够接受荧光辐射并发射荧光。GFP在原核或真核细胞中蓝光激发能发出绿光 即发射团的形成无物种特异性,也不需要特异的辅助因子。基于这一特点,gfp基因作为新型标记或报告基因可以广泛应用于各种生物。
22
gfp基因具有以下优点 适用于各种生物的基因转化 检测方法简便,只要有紫外光或蓝光照射,其表达产物即可发出绿色荧光
便于活体检测,有利于活体内基因表达调控研究 检测时可获得直观信息,有利于转基因植物安全性问题的研究及防范
23
荧光素酶基因 Luciferase 萤光素酶可催化生物体自身发光,荧火虫荧光素酶及细菌荧光素酶。
萤火虫萤光素酶催化6-羟基喹啉类,脱羧后生成激活态的氧化萤光素;细菌萤光素酶以脂肪醛为底物,氧化成脂肪酸。 萤光素酶检测的灵敏度高,而且没有背景,萤光素酶基因的最大特点是不损害植物,即在整体植物或离体器官内,基因产物都可测定。
24
4. 启动子和终止子 Promoter & Terminator
作用:形成独立的表达单元,启动目的基因的表达,同时减少或避免干扰邻近基因表达 aphIV 35S Gt1 psy 35S rbcS crtl TL TR T-DNA Border Hygromycin Resistance Phytoene Synthase Phytoene Desaturase Selectable Marker Gene of Interest Gene of Interest
25
常用的Promoter 组成型表达启动子(constitutive promotor),也叫非特异性表达启动子 特异性表达的启动子
诱导型启动子 其它
26
组成型表达启动子 constitutive promoter 也叫非特异性表达启动子 特点:表达没有时间、空间、组织的特异性
单子叶植物:来自玉米的Ubiquitin启动子和来源于水稻的Actin1 启动子 双子叶植物:来自花椰菜花叶病毒CaMV(Cauliflower mosaic virus)35S启动子
27
特异性或诱导性启动子 特异性表达的启动子 组织(花药)特异性表达启动子:TA29 种子特异性表达启动子:CG1 诱导型启动子
光诱导表达: rbsS启动子 热诱导表达:hsp70启动子 损伤诱导启动子: wun1 启动子 其它 气孔特异、病害诱导特异
28
植物基因转化的受体 原生质体 悬浮细胞 胚性愈伤组织 胚状体 叶片切块
其它受体:如花、子房、离体条件下的子叶、胚轴、茎段、根和体细胞胚、花粉等
29
第四节 遗传转化操作
30
一、受体材料的选择 受体是指用于接受外源DNA的转化材料。 良好的植物基因转化受体系统应满足如下条件: 高效稳定的再生能力;
受体材料要有较高的遗传稳定性; 外植体来源方便,如胚和其它器官等; 对筛选剂敏感; 转化率高
31
常用的受体材料有以下几大类型: 1.愈伤组织再生系统
外植体材料经过脱分化培养诱导形成愈伤组织,转化(带有目的基因质粒的农杆菌侵染),分化培养获得再生植株。 优点:外植体来源广,繁殖快,易接受外源基因, 转化效率高。 缺点:遗传稳定性差、嵌合体 因此需要连续的再生系统
32
外植体材料细胞不经过脱分化形成愈伤组织阶段,而是直接分化出不定芽形成再生植株。
2.直接分化再生系统 外植体材料细胞不经过脱分化形成愈伤组织阶段,而是直接分化出不定芽形成再生植株。 优点:周期短、操作简单,体细胞变异小,遗传稳定; 缺点:材料局限,转化率低。 3.原生质体再生系统 原生质体恢复细胞壁具有分化再生能力,是应用最早的再生受体系统之一。 优点:高效、广泛地摄取外源DNA或遗传物质,获得基因型一致的克隆细胞,所获转基因植株嵌合体少,适用于多种转化系统; 缺点:不易制备、再生困难和变异程度高。
33
4.胚状体再生系统 5.生殖细胞受体系统 是指具有胚胎性质的个体。 优点:个体数目巨大、同质性好,接受外源基因能力强,
嵌合体少,易于培养、再生。 缺点:技术含量高,多数植物不易获得胚状体。 5.生殖细胞受体系统 以生殖细胞如花粉粒、卵细胞等受体细胞进行外源基因转化的系统。 一是利用组织培养技术进行小孢子和卵细胞的单倍体培养、转化受体系统; 二是直接利用花粉和卵细胞受精过程进行基因转化,如花粉管导入法,花粉粒浸泡法,子房微针注射法等。
34
二、载体构建、转化流程图 外源基因 中间载体(pUC18,T-vector etc.) 启动子 筛选标记基因
启动子 筛选标记基因 中间表达载体(pBI121, pCAMBIA etc.) 转化载体系统 中间表达载体 + 农杆菌 (co-integrated vector/ binary vector ) 转化植物组织 (愈伤,胚轴,子叶等) 再生植株
35
转化载体的构建 E.Coli转化,质粒 抽提与鉴定 农杆菌的转化与活化 浸 染 选择培养 共培养 移栽 继代繁殖 生理检测 纯化
目的基因的克隆与鉴定 转化载体的构建 E.Coli转化,质粒 抽提与鉴定 农杆菌的转化与活化 外植体制备 浸 染 选择培养 共培养 移栽 继代繁殖 分子检测 生理检测 纯化
36
1、克隆目的基因
37
Recombinant DNA Is Formed by Splicing DNA From a Vector Into Host DNA
39
2. 农杆菌转化与活化
40
挑单克隆
43
测OD600
44
收集细胞
45
用液体MS培养基重悬细胞
46
将预培养的外植体放入菌液中共培养
47
100rpm,30min
48
取出外植体在无菌滤纸上吸干菌液
49
共培养Co-culture
50
在含有选择压力的培养基上诱导细胞分化,形成转化芽
51
诱导芽生长
52
生根,形成转化植株
53
A Requirement for Transgenic Development plant grows to maturity
Plant Tissue Culture A Requirement for Transgenic Development Callus grows This slide shows the basic steps of plant tissue culture. Some plant part is placed is on a defined culture media. That media induces the the tissue to develop callus. Callus is an undifferentiated mass of cells. These cells then grow into plant shoots, which are later rooted. The small seedling will then grown into a mature, seed-producing plant. When developing transgenic plants, the transformation cassette is introduced into that plant part that can be induced to grow new plants. A plant part Is cultured Shoots develop Shoots are rooted; plant grows to maturity
Similar presentations