Download presentation
Presentation is loading. Please wait.
1
第十一章 特殊選擇權
2
本章大綱 第一節 標準條件變化型選擇權 第二節 價格軌跡型選擇權 第三節 多重因子型選擇權 第四節 複合型選擇權
3
標準條件變化型選擇權 定額或二項式選擇權 抉擇型或隨心所欲選擇權 後付選擇權 遠期生效選擇權 準美式或百慕達選擇權
4
定額或二項式選擇權 當標的物價格上漲(指買權)或下跌(指賣權)至履約價格的水準時,持有選擇權的投資人將可獲得固定金額的報酬(現金或資產);反之,若標的物價格的表現不如預期,投資人將損失當初購買該選擇權的權利金。
5
圖11-1 定額買權與標準買權 損益結構的差異 定額買權權利金 標準買權權利金 損益 定額買權 S K 標準買權
6
圖11-2 定額賣權與標準賣權 損益結構的差異 定額賣權權利金 標準賣權權利金 損益 定額賣權 S K 標準賣權
7
抉擇型或隨心所欲選擇權 持有者可以在到期前某一特定日期決定該選擇權為買權或是賣權;一旦決定之後,該選擇權即變成標準的買權或賣權。
抉擇型選擇權的損益結構(TC=T) 。
8
圖11-3 抉擇型選擇權的損益 結構(Tc=T) ST K 損益 權利金
9
後付選擇權 在契約到期時,當選擇權處於價內的狀態,選擇權的持有者才須支付權利金並行使選擇權;若到期處於價外,則持有者不須支付任何的費用,同時可放棄該選擇權。
10
圖11-4 後付選擇權(以買權為例)的損益結構 ST K 損益 權利金
11
遠期生效選擇權 係以選擇權為標的的遠期契約,投資者於買進時須先支付權利金,到了未來特定日期時,行使契約後才會生效,且履約價格多設定為標的物在契約生效日時的價格。因此,在投資人買進遠期生效選擇權時,履約價格是未知的;而當契約生效時,選擇權即處於價平狀態。
12
遠期生效選擇權與標準選擇權的比較 遠期生效選擇權與標準選擇權(價平選擇權)的主要差異在於契約生效的時間。
遠期生效選擇權與標準價平選擇權在權利金上的關係:
13
遠期生效選擇權的應用 員工認股制度 定期利率上限契約(Periodic Caps)
以每1期初的指標利率加上約定的基本點(Basic Point, 1bp=0.01%)為上限 定期利率下限契約(Periodic Floors)
14
準美式或百慕達選擇權 選擇權持有者可以在到期前幾個特定的時間,以履約價格買進或賣出標的物的權利。此與標準選擇權的差異在於可行使權利的次數多寡。 準美式選擇權的權利金理應介於歐式與美式選擇權之間。
15
價格軌跡型選擇權 亞洲式選擇權 障礙式選擇權 回顧型選擇權
16
亞洲式選擇權 與標準選擇權最大的差異在於到期結算時,決定契約履約價值之標的物價格的取決方式不同。標準選擇權之到期履約價值,係以到期時標的物價格與履約價格之間的差異來計算,而亞洲式選擇權則以標的物在契約有效期間內(或到期前某段期間)的平均價格為結算價格,來計算契約的履約價值。
17
圖11-5 亞洲式選擇權之 損益結構(以買權為例)
K 損益 權利金 S
18
障礙式選擇權 障礙式選擇權除了有一般之履約價格外,尚有設計一特定的障礙價格(價格上限或下限),當標的物價格在契約到期前碰觸到此障礙價格,選擇權契約即立刻生效或終止。 分為生效型與終止型兩種。
19
表11-1 障礙式選擇權之分類 生效型 終止型 上限型 上限生效型買權 上限生效型賣權 上限終止型買權 上限終止型賣權 下限型
下限生效型買權 下限生效型賣權 下限終止型買權 下限終止型賣權
20
回顧型選擇權 主要特性在於可以讓持有者回溯標的物的價格表現,選擇最有利的價位來行使契約。 根據設計條件的不同,回顧型選擇權也可分為兩種類型:
以最有利價位為履約價格 有固定履約價格
21
圖11-6 回顧型買權之損益結構(以最有利價位為履約價格)
標的物價格 到期時價格 ‧ ‧ 履約價值 最佳履約價格 時間 契約有效期間
22
圖11-7 回顧型買權之損益結構(有固定履約價格)
標的物價格 最佳選擇價位 ‧ 履約價值 固定之履約價格 時間 契約有效期間
23
多重因子型選擇權 彩虹選擇權 價差選擇權 因變量選擇權
24
彩虹選擇權 與標準選擇權的差異在於契約標的物個數;標準選擇權通常只有一種風險性標的物,而彩虹選擇權則有二種以上(含二種)的風險性標的物。在契約到期時,持有者可依據最有利或契約約定的情況,選擇其中一種標的物來執行契約的權利。
25
表11-2 「 Two-Color 」 彩虹 選擇權之種類及其報償
標的物 履約價格 買權的報償 賣權的報償 Best of two risky assets and cash K=0 Cash=0 Max(S1T, S2T, X) - Better of two risky assets Max(S1T, S2T) Worse of two risky assets Min(S1T, S2T) Maximum of two risky assets K=X Max[0, Max(S1T, S2T) -X] Max[0, X-Max (S1T, S2T)] Minimum of two risky assets Max[0, Min (S1T, S2T) -X] Max[0, X-Min (S1T, S2T)]
26
價差選擇權 與標準選擇權的差異在於,價值或損益決定於二種標的物的價差,而非單一標的物的絕對價格。
價差選擇權的應用時機與一般價差策略類似,當投資人認為某兩種標的的價差偏離某正常或預期水準時,即可使用價差選擇權將其預期利潤化。
27
因變量選擇權 因變量選擇權是將其他幣別的標的物以另外一種幣別(例如本國幣別)來計價,例如將通常以日圓計價的日經股價指數選擇權改為美元報價,當美國投資人投資該類選擇權時,由於日經指數每變動1點的價值已由美元計算(如1點為1美元),因此投資人只要關心指數的變動,無須擔心匯率的變化會影響其損益。 因變量選擇權之損益結構:
28
複合型選擇權 選擇權的選擇權。 (1)買權的買權(a call on a call);(2)賣權的買權(a call on a put);(3)買權的賣權(a put on a call);(4)賣權的賣權(a put on a put)。
29
表11-3 複合型選擇權之 損益結構 複合選擇權 時間t 時間T 買權的買權 Max(0, Ct-k) Max(0, ST-K) 賣權的買權
Max(0, Pt-k) Max(0, K-ST) 買權的賣權 Max(0, k-Ct) -Max(0, ST-K) 賣權的賣權 Max(0, k-Pt) -Max(0, K-ST)
Similar presentations