Presentation is loading. Please wait.

Presentation is loading. Please wait.

幾何繪圖 Geometrical Drawing

Similar presentations


Presentation on theme: "幾何繪圖 Geometrical Drawing"— Presentation transcript:

1 幾何繪圖 Geometrical Drawing
姓名: 班別: ( ) 幾何繪圖

2 幾何繪圖法 Geometrical Drawing
平行線作圖法 垂直等分線作圖法 任意等分直線作圖法 二等分角 多角形作圖法 正切作圖法 橢圖作圖法 工程圖幾何設計 幾何繪圖

3 線的特性 直線 Straight Line 曲線 Curved line 任何長度的直線 圓弧 Arc - 有中心點及半徑
不規則曲線 Irregular curve - 沒有一定的半徑 幾何繪圖

4 線的特性 平行線 Parallel lines - 兩條方向相同及距離固定的線
垂直線 Perpendicular lines - 兩條方向成90度的線 交切線 Intersecting lines (右圖) 交越點 幾何繪圖

5 角 Angles 平角 直角 鈍角 銳角 大過90度 頂點 幾何繪圖

6 三角形 Triangles 等邊三角形 Equilateral Triangle 等腰三角形 Isosceles Triangle
不等邊三角形 Scalene Triangle 內角和 = 180 高度 頂點 底邊 90 幾何繪圖

7 直角 Right Triangles 下圖中三角形斜邊 Hypotenuse 穿過圓的中心及長度 = 直徑 另外兩條邊的交點在圓周上
兩條邊形成的角必定是90° 斜邊 直角 幾何繪圖

8 已知斜邊及另一邊長度的直角三角形 1 2 3 4 5 已知斜邊 已知其中一邊 中心線 幾何繪圖

9 四邊形 Quadrilaterals 兩條對角線將四邊形分成四個三角形 四邊形內角和 = 360° 菱形 正方形 梯形 長方形 平行四邊形
凹四邊形 幾何繪圖

10 正多角形 (正多邊形) Regular Polygons
等邊 Equal sides 內角相等 Equal internal angles 轉角 平邊 外接圓 內切圓 內角 幾何繪圖

11 正多角形 (正多邊形) Regular Polygons
計算多邊形外角 外角 = 360°  邊數目 內角 = 180° - 內角 8-邊形例子: 外角 = 360°  8 = 45° 內角 = 180° - 45 ° = 135° 45° 內角 135 ° 外角 幾何繪圖

12 正多角形 (正多邊形) Regular Polygons
Name 名稱 Number of Sides 邊數量 Interior Angle 內角 Equilateral Triangle 正三角形 3 60 Square 正方形 4 90 Pentagon 正五角形 5 108 Hexagon 正六角形 6 120 Octagon 正八角形 8 135 幾何繪圖

13 正多面體 Regular Polyhedrons
由多個正多邊平面組成 例子有柱體 Prism 和 錐體 Pyramid Prism 幾何繪圖

14 柱體 Prisms 例子 正方柱立體 正立三角柱體 正立長方柱體 正立五角柱體 斜立六角柱體 斜立長方柱體 幾何繪圖

15 錐體 Pyramid Prisms 例子 正三角錐體 正方斜截錐體 正五角斜錐體 幾何繪圖

16 圓 Circles 同心圓 不同心圓 圓心 直徑 半徑 圓周 幾何繪圖

17 弧 Arcs 弧是部分的圓周 弧長 角度 半徑 幾何繪圖

18 橢圓 Ellipses 中心 副軸 主軸 主直徑 副直徑 幾何繪圖

19 球體 Spheres 幾何繪圖

20 圓柱體 (Cylinder) h = 高度 r = 半徑 幾何繪圖

21 圓錐體 (Cone) h = 高度 r = 半徑 h r 幾何繪圖

22 平行線 Parallel Lines 作圖法 (一)
兩條平行線距離 = CD (3) 以F為中心,CD為半徑畫弧 (2) 以E為中心,CD為半徑畫弧 (4) A’B’連接兩弧最高點,A’B’與AB平行,兩線距離CD 已知AB直線,畫一條與AB平行及距離=CD的直線 (1) E及F是AB線上左右任意點兩點 幾何繪圖

23 平行線 Parallel Lines 作圖法 (二)
已知P點,畫一條穿過P點與AB線平行的線 1. RS為穿過P點的任意線 2. 將角MRB複制為角 SPY 3. XY線與AB線平行 幾何繪圖

24 平行線 Parallel Lines 作圖法 (二)
已知R點,畫一條穿過R點與PQ線平行的線 - 詳細步驟 幾何繪圖

25 垂直等分線 Perpendicular Bisector
弧半徑大過線長的一半 已知直線AB 兩弧交點 連接上下兩弧交點得到垂直等分線 幾何繪圖

26 任意等分直線作圖法 1. 例子 - 將 AB 線等分6份 2. 先任意畫一條與 AB 線成適當角度的線AM 3. 在 AM 線上以適當距離刻上 6 個相等段 4. 連接 6 及 B 點 5. 以T尺及三角板協助畫出與 6B 平行的線分別穿過 1、2、3、4、 並在 AB 線上得出 a、b、c、d、e 點,即可在AB線上得到6等份 幾何繪圖

27 二等分角 Bisecting an Angle 作圖法
用同樣方法可將二等分角再細分成四等分角、八等分角…等 幾何繪圖

28 三角形作圖法 畫出已知三條邊的三角形 1. 先畫出一條底邊AB 2. A點作圓心,以AC邊長為半徑用圓規畫一個弧
3. B點作圓心,以BC邊長為半徑用圓規畫一個弧 4. 兩弧交點為C 5. 連接AC及BC 幾何繪圖

29 三角形的外接圓作圖法 1. 先後畫出三角形二至三條邊的垂直等分線 2. 以各條垂直等分線交點作圓心,畫出外接三角形三隻角的圓 幾何繪圖

30 三角形的內切圓作圖法 1. 先後畫出三角形二至三隻角的等分角線
2. 以各條等分角線交點作圓心,及圓心至邊的垂直線作半徑,畫出內切三角形三條邊的圓 幾何繪圖

31 正六角形 (六邊形) 特性 正六角形內可分成六個等邊三角形 計算每個三角形外角 360°  6 = 60° 內角 = 120度
a = 邊長 = 外接圓半徑Ru Ri=內切圓半徑 外角=60° 內角= 120° 幾何繪圖

32 正六角形作圖法 (一) 已知對角距離 先用對角距離作半徑畫出一個圓形 用T尺、直角尺及30度尺將圓周分六份 用直尺順序連接圓周上相鄰兩點
幾何繪圖

33 正六角形作圖法 (二) 已知對角距離 用T尺及直角尺畫垂直線 先用對角距離作半徑畫出一個圓形 以相同半徑用圓規將圓周分成六等份
用直尺順序連接圓周上相鄰兩點 1 2 3 4 5 幾何繪圖

34 正六角形作圖法 (三) 已知對邊距離 先用對邊距離作半徑畫出一個圓形 用T尺及60度尺將圓周分六份
用直角尺及30度尺順序畫出圓周上六點的正切線 幾何繪圖

35 正六角形作圖法 (四) 已知邊長 先畫底邊AB 利用T尺及60度尺畫出六個順序相連三角形 9 8 7 4 2 3 6 5 60 A 1 B
幾何繪圖

36 正六角形作圖法 (五) 已知邊長 先畫底邊AB 利用圓規畫出一個等邊三角形AOB 以三角形頂點O作圓心,邊長AB作半徑,用圓規畫一圓形
將圓周分六份 用直尺完成其餘五條邊 A B O 1 2 3 4 5 6 7 8 9 幾何繪圖

37 正六角形作圖法 (六) 已知對角距離 先用T尺畫水平線 用對角距離一半作半徑畫出一個圓形 以相同半徑用圓規將圓周分成六等份
用直尺順序連接圓周上鄰近兩點 1 2 3 4 5 6 7 9 8 幾何繪圖

38 正六角形作圖法 (七) 已知對角距離畫法動畫示範 1 2 3 4 5 幾何繪圖

39 正六角形作圖法 (八) 已知邊長 先用T尺及30度三角尺畫一條邊AB 利用T尺、30度及90度三角尺畫出六個相連順序三角形 9 8 7 6
30 1 2 3 4 5 6 7 8 9 幾何繪圖

40 正六角形作圖法 (九) 已知邊長 先用T尺及30度三角尺畫一條邊AB 利用圓規畫出一個等邊三角形
以三角形頂點作圓心,邊長作半徑,用圓規畫一圓形 將圓周分六等份 用直尺完成其餘五條邊 A B O 幾何繪圖

41 正八角形作圖法 (一) 12 已知邊長 用T尺畫水平底邊2-6 11 10 再分別用T尺、45度三角尺、90度直角尺及圓規,分別畫出其餘各邊
45° 內角 135 ° 外角45° 1 2 3 4 5 6 7 8 9 10 11 12 已知邊長 用T尺畫水平底邊2-6 再分別用T尺、45度三角尺、90度直角尺及圓規,分別畫出其餘各邊 圖中紅色大字是步驟 幾何繪圖

42 正八角形作圖法 (二) 已知對邊距離 用T尺及直角尺畫正方形 用45度三角尺畫正方形對角線 以正方形四角為圓心畫四個互相正切的圓
將圓與正方形四邊切點順序連接 2 1 幾何繪圖

43 正八角形作圖法 (三) 已知外接圓直徑 (對角距離) 用圓規畫出外接圓 以T尺、直角尺及45度尺畫水平、垂直,及兩條45度線與外接圓交切
順序用直尺連接圓周上交切點 幾何繪圖

44 正八角形作圖法 (四) 已知外接圓直徑 (對角距離) 1.用T尺畫水平直線及圓規畫出外接圓 2.用圓規畫出垂直等分線 3.用圓規作出45度線
4.用圓規找出其餘3點 5.順序用直尺連接圓周上8點 幾何繪圖

45 正八角形作圖法 (五) 已知外接圓直徑 (對角距離),用圓規 及直尺畫八角形的動 畫示範。 8 3 7 5 2 4 1 6 9 10
幾何繪圖

46 正五角形作圖法 72 正五角形內可分成五個等腰三角形 計算每個三角形外角 360°  5 = 72° 幾何繪圖

47 正五角形作圖法 (一) 已知外接圓直徑的畫法步驟 (2)外接圓 (3)垂直等分線 (5)CA半徑畫圓 (4)OB中點C (1)直線
(6)AD半徑畫圓 (7)FH=AF (8)EG=AF 已知外接圓直徑的畫法步驟 幾何繪圖

48 正五角形作圖法 (二) 與畫法(一)大致相同的五角形畫法動畫示範 幾何繪圖

49 正多角 (多邊) 形通用作圖法 (一) 已知邊長AB 畫AB的垂直等分線Y-Y B點畫垂直線,BP=AB B點作圓心,畫弧AP
弧AP與直線AP分別與AB的垂直等分線Y-Y交切,得到第4及第6點 將4-6線段分中得第5點 用圓規將4-5線段複制得到第6-7、7-8及8-9點 利用第7點作圓心7-B作半徑可畫出7角形的外接圓 用圓規求出CDFG各點 幾何繪圖

50 正多角 (多邊) 形通用作圖法 (一) 可用先前畫7角形的類似方法畫出其它多角 (多邊)形 左圖是畫出4、5、6、8邊形的例子 幾何繪圖

51 正多角 (多邊) 形通用作圖法 (二) 已知外接圓直徑AB 先畫外接圓 A 將直徑AB分成與邊數相等的等份
AB點先後作圓心,以AB作半徑分別畫兩弧,相交點C 以直尺連接C點和直徑AB上的第2點並與圓周交切D點 用圓規及AD距離將圓周分等份 用直尺順序連接圓周上各點以相同方法可畫其它多邊形 A B C D 幾何繪圖

52 橢圓形作圖法 (同心圓法) 畫出水平主軸及垂直軸 用主直徑畫圓 幾何繪圖

53 橢圓形作圖法 (同心圓法) 用副直徑畫圓 幾何繪圖

54 橢圓形作圖法 (同心圓法) 用30度及60度尺將圓分成12等分 幾何繪圖

55 橢圓形作圖法 (同心圓法) 在外圓圓周的10個切點向水平軸方向畫垂直線 幾何繪圖

56 橢圓形作圖法 (同心圓法) 在內圓圓周的10個切點向垂直軸相反方向畫水平線 幾何繪圖

57 橢圓形作圖法 (同心圓法) 用曲線板將各水平及垂直線交點連 接成橢圓形 幾何繪圖

58 正切 Tangents 線與圓正切 正切點 直線與圓互相接觸而只有一個接觸點稱為正切 正切點連接圓心的線與正切直線互成90 幾何繪圖

59 正切 Tangents 圓與圓互相接觸而只有一個接觸點稱為正切 連接兩個圓心的直線一定穿過正切點 連接兩圓心的線穿過正切點 圓與圓正切
幾何繪圖

60 正切 Tangents 未知圓心的弧 已知正切點 與弧正切於P點的直線 幾何繪圖

61 弧正切兩條成直角的線 幾何繪圖

62 弧正切兩條成銳角的線 (一) 弧的半徑 弧半徑=AB GH//CD IJ//EF P=弧的圓心 弧的圓心位置適宜便可 幾何繪圖

63 弧正切兩條成銳角的線 (二) 幾何繪圖

64 弧正切兩條成鈍角的線 幾何繪圖

65 一個圓正切另一個圓及直線 已知圓 1.與已知直線距離R的平行線 r R T 3. 以C作中心R作半徑畫圓,這個圓與已知圓及直線正切 R+r
幾何繪圖

66 弧正切另一個弧及直線 (一) R1 幾何繪圖

67 弧正切另一個弧及直線 (二) 幾何繪圖

68 弧正切另一個弧及直線 (三) 幾何繪圖

69 弧正切另外二個圓 (一) 幾何繪圖

70 弧正切另外二個弧 (二) R 幾何繪圖

71 弧正切另外二個圓 (三) 幾何繪圖

72 弧正切另外二個圓 (三) 幾何繪圖

73 弧正切另外二個弧 (四) 幾何繪圖

74 雙彎曲線 Ogee Curve 作圖法 1. 等分AB線 2. 等分AC線 3. 畫出AC的垂 直等分線 4. 畫出A點的 直角線AX
5. 用X作圓心, XA做半徑畫 出弧AC 6. 重複1-5步畫 出弧CB 幾何繪圖


Download ppt "幾何繪圖 Geometrical Drawing"

Similar presentations


Ads by Google