Download presentation
Presentation is loading. Please wait.
1
毕业论文报告 孙悦明
2
论文题目 使用本体结构辅助系统化调研
3
提纲 论文工作介绍 系统化调研简介 结构化摘要简介 工作整体介绍 SLRONT的构建 扩展SLRONT为COSONT 实例化COSONT
4
系统化调研简介 系统化调研 SLR Protocol 定义研究问题 各个步骤的执行准则 Identification of Research
Study Selection Study Quality Assessment Data Extraction Data Synthesis
5
结构化摘要简介 结构化摘要 完备性与清晰性 Background Object Method Result Conclusion
6
工作整体介绍 工作流程图
7
SLRONT的构建 Review Protocol部分
8
SLRONT的构建 Primary Study部分
9
扩展为COSONT 主要扩展Structured abstract部分
10
COSONT 估算方法部分的扩展
11
实例化COSONT—非结构化摘要 Background Method Conclusion part
12
实例化COSONT—基于规则的分析 MAINSEN CONCLU 定位结果 R1: S = PP, NP VP R2: S = NP VP
In this paper, we propose an approach that converts cost estimation into a classification problem and that classifies new software projects in one of the effort classes, each of which corresponds to an effort interval. MAINSEN R1: S = PP, NP VP R2: S = NP VP CONCLU R3: S = (PP,)+ NP VP 定位结果 Results of the study show a significant correlation between the software development effort and all three models. Sentences Total Found Precision MAINSEN Sentence 347 267 76.95% CONCLU Sentence 244 70.3%
13
实例化COSONT—抽取本体信息 抽取的名词词组对比 抽取结论 - amod(method-9, effective-8)
The results show that KNN is an effective method. - amod(method-9, effective-8) - nsubj(method-9, KNN-5) - cop(method-9, is-6) - det(method-9, an-7) Paper Manual Auto Aver Recall per paper Student 1 85 652 508 80.102% Student 2 406 342 84.281% Student 3 472 336 72.428% Student 4 503 390 77.613% This paper describes a controlled experiment of student programmers performing maintenance tasks on a C++ program.
14
实例化COSONT
15
支持SLR中的关键步骤 辅助系统化调研第二步 寻找带有regression and neural network的文章 专家判断:
自动化方法 Student ID Num of Papers Paper Identified Time (Person*Hour) 1 87 6 8.5 2 7.5 3 9 4 86 10 Total 347 11 35
16
Q&A
17
感谢各位老师和同学!
Similar presentations