Presentation is loading. Please wait.

Presentation is loading. Please wait.

随着丁俊晖在中国斯诺克赛中夺冠,台球越来越受国人瞩目,本文将对台球中的碰撞作简要分析。

Similar presentations


Presentation on theme: "随着丁俊晖在中国斯诺克赛中夺冠,台球越来越受国人瞩目,本文将对台球中的碰撞作简要分析。"— Presentation transcript:

1 随着丁俊晖在中国斯诺克赛中夺冠,台球越来越受国人瞩目,本文将对台球中的碰撞作简要分析。
台球中的碰撞分析 乐舟南 PB 物理(2)班 随着丁俊晖在中国斯诺克赛中夺冠,台球越来越受国人瞩目,本文将对台球中的碰撞作简要分析。

2 本文不过多考虑碰撞前后的运动细节。只考虑碰撞的两球的速度变化以及此后的大致运动状况。
V A B W 如图所示,球A具有速度v,角速度w,而球B静止的位于台面上。球A正向球B运动过去。 下面将就角速度w的大小和方向来讨论两球相撞后的运动状况。

3 1.角速度w=0 此时,两个台球碰撞时可分为正碰和斜碰两种,如图1和图2所示: v v B A B A 图2 图1
a,. 正碰很简单,球A与球B相互交换速度,即球A静止,而球B以速度v向前运动 v A B

4 b. 球A与球B发生斜碰时,在碰撞的瞬间,若忽略两球间的摩擦力,则两球只在球心连线方向上用作用力,由于两球的碰撞近似于弹性碰撞,所以碰后球的运动将如下图所示:
vB B vB B V A V A vA vA 其中,vB为沿球A与球B的圆心连线方向 vA与vB垂直,并且它们的合向量就是球A的初速度v。

5 碰撞后的瞬间,球B获得了速度v,而球A相对于台面,已没有了初速度v, 只剩下转动的角速度w。
并且由牛顿定律,和角动量定理,可列出如下方程:

6 mdv = - f; Idw = - f r;即0.4mrdw = - f ; 所以:mv+0.4mwr 是个守恒量;由纯滚动时:v=w r
就是说,若球A没碰到什么阻碍,它将最终达到一个速度v,且v略小于2/7w r,此时球A将作纯滚动,并在滚动摩擦力矩的作用下渐渐停止。 对于球B,也类似,只不过它的最终速度为 v=5/7 v0,即若球B没碰到什么阻碍,它将最终达到速度v,且v略小于5/7 v0,此时球B将作纯滚动,并在滚动摩擦力矩的作用下渐渐停止。 vA=2/7w r V1=5/7v A B

7 b. 当两球发生斜碰时,情况基本与正碰相仿,只是此时球A还具有一个初速度va。
这时球受到两个摩擦分力的作用f1和f2 在f1作用下,球A将具有一个向后的速度 在f2的作用下,球A的角速度w将改变一个方向 所以球A的运动轨迹将向后偏离,如下图所示: f2 f1 va vB A v0 va A va1 球B的运动与正碰中相似。

8 2.角速度w不为零,且方向为从外向里。 v=2/7 w r v1=5/7 v0 va=2/7 w r v A B a. 若两球发生正碰
碰撞后的瞬间,球B获得了速度v,而球A相对于台面,只有转动的角速度w。 由前面的计算,球A将加速向前运动,并且最终速度将略小于 v=2/7 w r v1=5/7 v0 va=2/7 w r W A B 所以 , 若Va=2/5w r 比V1大了较多 ( 即2wr>>5v0 ),那么若球B没有受阻碍,或没有进洞,球A追上球B并与之再次碰撞。

9 若Va=2/5w r 并不比V1大了较多,那么球A只是会向球B运动,但不会与球B相碰。
此时的情况与前面相似。球B获得初速度后将向前运动。即若没碰到什么阻碍,它将最终达到速度v,且v略小于5/7 v0,然后球B将作纯滚动,并在滚动摩擦力矩的作用下渐渐停止。 球A在碰后的瞬间也是既有角速度,又有初速度,且两速度在水平面上并不垂直,在摩擦力的作用下,球A将沿一曲线运动,如下所示: vB A v0 va va1 A

10 上文只是极为简单的对台球中两球相碰的过程进行了分析,实际打球时除了了解这些,更需要靠许多经验的积累。
谢谢观赏!


Download ppt "随着丁俊晖在中国斯诺克赛中夺冠,台球越来越受国人瞩目,本文将对台球中的碰撞作简要分析。"

Similar presentations


Ads by Google