Presentation is loading. Please wait.

Presentation is loading. Please wait.

实验数据处理方法 第二部分:Monte Carlo模拟

Similar presentations


Presentation on theme: "实验数据处理方法 第二部分:Monte Carlo模拟"— Presentation transcript:

1 实验数据处理方法 第二部分:Monte Carlo模拟
第七章 均匀分布随机数的产生 随机数的定义和特性 随机数的产生 线性乘同余方法

2 第七章 均匀分布随机数的产生 7.1 随机数的定义和特性

3 7.1 随机数的定义和特性 什么是随机数? 单个的数字不是随机数 是指一个数列,其中的每一个体称为随机数,其值与数列中的其它数无关;
在一个均匀分布的随机数中,每一个体出现的概率是均等的; 例如:在[0,1]区间上均匀分布的随机数序列中, 与0.5出现的机会均等

4 7.1 随机数的定义和特性 随机数应具有的基本特性 考虑一个对高能粒子反应过程的模拟:需用随机数确定: 出射粒子的属性:能量、方向、…
粒子与介质的相互作用 对这一过程的模拟应满足以下要求(相空间产生过程): 出射粒子的属性应是互不相关的,即每一粒子的属性的确定独立于其它的粒子的属性的确定; 粒子的属性的分布应满足物理所要求的理论分布; 所模拟的物理过程要求随机数应具有下列特性: 随机数序列应是独立的、互不相关的(uncorrelated): 即序列中的任一子序列应与其它的子序列无关;

5 7.1 随机数的定义和特性 长的周期(long period):
实际应用中,随机数都是用数学方法计算出来的,这些算法具有周期性,即当序列达到一定长度后会重复; 均匀分布的随机数应满足均匀性(Uniformity): 随机数序列应是均匀的、无偏的,即:如果两个子区间的“面积”相等,则落于这两个子区间内的随机数的个数应相等。 例如:对[0,1)区间均匀分布的随机数,如果产生了足够多的随机数,而有一半的随机数落于区间[0,0.1]不满足均匀性 如果均匀性不满足,则会出现序列中的多组随机数相关的情况均匀性与互不相关的特性是有联系的

6 7.1 随机数的定义和特性 有效性(Efficiency): 模拟结果可靠 模拟产生的样本容量大 所需的随机数的数量大
随机数的产生必须快速、有效,最好能够进行并行计算。

7 第七章 均匀分布随机数的产生 7.2 随机数的产生

8 7.2 随机数的产生 [0,1]区间上均匀分布的随机数是Monte Carlo模拟的基础:
服从任意分布的随机数序列可以用[0,1]区间均匀分布的随机数序列作适当的变换或舍选后求得 [0,1]均匀分布的随机数的产生方法: 利用一些具有内在的随机性的过程: 放射性衰变过程(radioactive decay); 热噪声(thermal noise); 宇宙线的到达时间(cosmic ray arrival); 缺点:模拟的结果不可再现,使得模拟程序的找错困难 利用事先制订好的随机数表: 缺点:表的容量有限,不适合需要大量随机数的应用

9 7.2 随机数的产生 利用数学递推公式在计算机中产生随机数
其中:T为某个函数,给定初值r1,r2,…,rk,可按上式确定rn+1, n=1,2,… 随机数序列. 算法:产生[0,M]区间上的整数In,然后利用公式rn=In/M返回[0,1]区间上的实数 优点: 占用计算机的内存少; 产生速度快; 可以重复前次的模拟结果,便于程序的找错;

10 7.2 随机数的产生 缺点: 不满足随机数之间相互独立的要求:公式和初值确定后,序列就唯一地确定了;
不满足均匀性:计算机能表示的[0,1]区间内的数是有限的(由字长确定) 递推到一定次数后,出现周期性的重复现象 伪随机数(Pseudo-Random Number)

11 7.3 线性乘同余方法 (Linear Congruential Method)
第七章 均匀分布随机数的产生 7.3 线性乘同余方法 (Linear Congruential Method)

12 7.3 线性乘同余方法 (Linear Congruential Method)
1948年由Lehmer提出的一种产生伪随机数的方法,是最常用的方法。 1、递推公式: 其中: I0: 初始值(种子seed) a: 乘法器 (multiplier) c: 增值(additive constant) m: 模数(modulus) mod:取模运算:(aIn+c)除以m后的余数 a, c和m皆为整数 产生整型的随机数序列,随机性来源于取模运算 如果c=0  乘同余法:速度更快,也可产生长的随机数序列 mod:取模运算:(aIn+c)除以m后的余数 实型随机数序列:

13 7.3 线性乘同余方法 (Linear Congruential Method)
2、实型随机数序列: 3、特点: 1)最大容量为m: 2)独立性和均匀性取决于参数a和c的选择 例:a=c=I0=7, m=10  7,6,9,0,7,6,9,0,…

14 7.3 线性乘同余方法 (Linear Congruential Method)
m 应尽可能地大,因为序列的周期不可能大于m; 通常将m取为计算机所能表示的最大的整型量,在32位计算机上,m=231=2x109 5、乘数因子a的选择: 1961年,M. Greenberger证明:用线性乘同余方法产生的随机数序列具有周期m的条件是: c和m为互质数; a-1是质数p的倍数,其中p是a-1和m的共约数; 如果m是4的倍数,a-1也是4的倍数。 例:a=5,c=1,m=16,I0=1 周期=m=16 1,6,15,12,13,2,11,8,9,14,7,4,5,10,3,0,1,6,15, 12,13,2,..

15 7.3 线性乘同余方法 (Linear Congruential Method)
RANDU随机数产生器: 1961年由IBM提出 unsigned long seed = 9; float randu() { const unsigned long a = 65539; const unsigned long m = pow(2,31); unsigned long i1; i1 = (a * seed) % m; seed = i1; return (float) i1/float(m); } void SetSeed(unsigned long i) { seed = i; }

16 7.3 线性乘同余方法 (Linear Congruential Method)
存在严重的问题: Marsaglia效用,存在于所有乘同余方法的产生器 void test() { c1 = new TCanvas("c1",“Test of random number generator",200,10,700,900); pad1 = new TPad("pad1",“one ",0.03,0.62,0.50,0.92,21); pad2 = new TPad("pad2",“one vs one",0.51,0.62,0.98,0.92,21); pad3 = new TPad("pad3",“one vs one vs one",0.03,0.02,0.97,0.57,21); pad1->Draw(); pad2->Draw(); pad3->Draw(); TH1F * h1 = new TH1F("h1","h1",100,0.0,1.0); TH2F * h2 = new TH2F("h2","h2",100,0.0,1.0,100,0.0,1.0); TH3F * h3 = new TH3F("h3","h3",100,0.0,1.0,100,0.0,1.0,100,0.0,1.0);

17 7.3 线性乘同余方法 (Linear Congruential Method)
for(int i=0; i < 10000; i++) { float x = randu(); float y = randu(); float z = randu(); h1->Fill(x); h2->Fill(x,y); h3->Fill(x,y,z); } pad1->cd(); h1->Draw(); pad2->cd(); h2->Draw(); pad3->cd(); h3->Draw();

18 7.3 线性乘同余方法 (Linear Congruential Method)

19 7.3 线性乘同余方法 (Linear Congruential Method)

20 7.3 线性乘同余方法 (Linear Congruential Method)
1968年,Marsaglia对这一问题进行了研究,认为: 任何的乘同余产生器都存在这一问题:在三维和三维以上的空间中,所产生的随机数总是集聚在一些超平面上 随机数序列是关联的 对于32位的计算机,在d-维空间中超平面的最大数目为 d= d= d= d= 改进措施:将递推公式修改为 特点:1)需要两个初始值(种子); 2)周期可大于m;

21 7.3 线性乘同余方法 (Linear Congruential Method)
#include <math.h> unsigned long seed0 = 9; unsigned long seed1 = 11; float randac() { const unsigned long a = 65539; const unsigned long b = 65539; unsigned long i2; unsigned long m = pow(2,31); i2 = (a * seed1 + b * seed0 ) % m; seed0 = seed1; seed1 = i2; return (float) i1/float(m); } void SetSeed(unsigned long i0, unsigned long i1) { seed0 = i0; seed1 = i1; }

22 7.3 线性乘同余方法 (Linear Congruential Method)
a=b=65539, seed0=9, seed1=11

23 7.3 线性乘同余方法 (Linear Congruential Method)
如何获取[0,1]区间均匀分布的随机数产生器: 每一个Monte Carlo模拟程序软件包都有自带的产生器: Jetset(LUND Monte Carlo模拟系列):利用Marsaglia等所提出的算法,周期可达1043 函数用法:r=rlu(idummy) Geant3(探测器模拟程序,FORTRAN): 周期=1018 Call grndm(vec*,len) …. 利用CERN程序库: Y=rndm(x): 周期:5x108 Y=rn32(dummy):乘同余法,a=69069,i0=65539 Call ranmar(vec,len): 周期:1043 Call ranecu(vec,len,isq)

24 7.3 线性乘同余方法 (Linear Congruential Method)
利用CLHEP中的随机数产生器软件包: CLHEP(Class Library for High Energy Physics)中的随机数产生器

25 7.3 线性乘同余方法 (Linear Congruential Method)
FORTRAN中使用随机数产生器应注意的问题: 在FORTRAN中,如果随机数产生器是带dummy变量的函数: 其中变量idum在函数中不使用,应注意以下问题: X=RAND(idum) FORTRAN编译器在对程序进行优化时: X=RAND(IDUM)+RAND(IDUM)  X=2.0*RAND(IDUM) DO I=1,10 X=RAND(IDUM) END DO …. 解决办法: DO I=1,10 IDUM = IDUM +1 X=RAND(IDUM) END DO


Download ppt "实验数据处理方法 第二部分:Monte Carlo模拟"

Similar presentations


Ads by Google