Presentation is loading. Please wait.

Presentation is loading. Please wait.

第二單元 面積與黎曼和.

Similar presentations


Presentation on theme: "第二單元 面積與黎曼和."— Presentation transcript:

1 第二單元 面積與黎曼和

2 Area

3 Archimedes’ Method

4 Area

5 More Rectangle is better

6 The Area under the Curve
Definition f defined on[a,b],if f is continuous on[a,b]and on[a,b], then

7 Riemann Sum A German mathematician who made important generalization to the definition of the integral( )

8 The Definite integral f defined on [a,b]for which the limit exists and is same for any choice of partitions .When the limit exists , we say that f is integrable on [a,b].

9 Some Special Sum Formula

10 Example

11 Example

12 Example

13 Example

14 Example Example

15 Example

16 單元結語 本單元說明了定積分的意義為面積。 面積的求法要能夠以黎曼和求之,黎曼和就是分割後再相加的觀念。
以後是不是要求面積時都需要以黎曼合來計算呢?不!這樣算實在太麻煩了,第四單元,有一個定理叫做”微積分基本定理”,它可簡化我們的計算。 看完本單元後單元後,建議同學多複習上學期所學的各類型導函數的求法。


Download ppt "第二單元 面積與黎曼和."

Similar presentations


Ads by Google