Download presentation
Presentation is loading. Please wait.
1
第二單元 面積與黎曼和
2
Area
3
Archimedes’ Method
4
Area
5
More Rectangle is better
6
The Area under the Curve
Definition f defined on[a,b],if f is continuous on[a,b]and on[a,b], then
7
Riemann Sum A German mathematician who made important generalization to the definition of the integral( )
8
The Definite integral f defined on [a,b]for which the limit exists and is same for any choice of partitions .When the limit exists , we say that f is integrable on [a,b].
9
Some Special Sum Formula
10
Example
11
Example
12
Example
13
Example
14
Example Example
15
Example
16
單元結語 本單元說明了定積分的意義為面積。 面積的求法要能夠以黎曼和求之,黎曼和就是分割後再相加的觀念。
以後是不是要求面積時都需要以黎曼合來計算呢?不!這樣算實在太麻煩了,第四單元,有一個定理叫做”微積分基本定理”,它可簡化我們的計算。 看完本單元後單元後,建議同學多複習上學期所學的各類型導函數的求法。
Similar presentations