Presentation is loading. Please wait.

Presentation is loading. Please wait.

第 2 章 电子产品的防护 2.1 气候因素的防护   2.2 电子产品的散热及防护 2. 3 机械因素的隔离 2. 4 电磁干扰的屏蔽.

Similar presentations


Presentation on theme: "第 2 章 电子产品的防护 2.1 气候因素的防护   2.2 电子产品的散热及防护 2. 3 机械因素的隔离 2. 4 电磁干扰的屏蔽."— Presentation transcript:

1 第 2 章 电子产品的防护 2.1 气候因素的防护   2.2 电子产品的散热及防护 机械因素的隔离 电磁干扰的屏蔽

2 2.1气候因素的防护 潮湿的防护 潮湿将导致电子产品的表面电阻率下降,绝缘强度降低,甚至发生漏电、短路和损坏。潮湿还会引起材料腐蚀、霉烂和金属生锈。 物体的吸湿是由于物体周围空气中水蒸汽的分子运动,一部分水分子会被吸附在物体表面上,形成一层水膜,并随着空气相对湿度的增高,水膜厚度也增大。这层水膜再通过扩散、吸收、吸附、凝露形式进入物体内部。

3 物体的吸湿形式: (1)扩散。在高湿环境中,由于物体内部和周围环境的水汽压力差较大,水分子在压力差的作用下,向物体内部扩散,使水分子进入物体内部。扩散随着温度升高而加剧。 (2)吸收。有些材料本身具有缝隙和毛细孔,如高分子塑料的分子间,均存在一定的空隙,纤维材料则有众多的毛细孔,当这种材料处于潮湿空气中时,材料表面的水膜分子由于毛细作用,进入材料内部。 (3)吸附。由于物体表面的分子对水分子具有吸引力。当物体处于潮湿空气中时,水分子就会吸附到物体表面上,形成一层水膜。含有碱及碱土金属离子、非金属化合物离子以及离子晶体化的固体材料,对水分子有较大的吸附能力。 (4)凝露。当物体表面温度低于周围空气的露点时,空气中的水蒸汽便会在物体表面上凝结成水珠,在物体表面上形成一层很厚的水膜。在高温、低温交变循环下,可能造成材料内部的内凝露,严重时会使材料内部积水。

4 吸湿性——它以材料在温度为20ºC和相对湿度为100%(或97%~100%)的空气中经过24小时后所增加重量的百分数来表示。
水分子以扩散和吸收的形式进入物质内部的程度,可以用吸湿性(吸水性)和透湿性等指标表示。 吸湿性——它以材料在温度为20ºC和相对湿度为100%(或97%~100%)的空气中经过24小时后所增加重量的百分数来表示。 吸水性以材料放在温度为(20±5)ºC的蒸馏水中经过24小时后所增加重量的百分数来表示。

5 透湿性——材料能被子水蒸汽(或水分子)透过的能力。透湿性用透湿率来表示。即在单位气压(mmHg)下,材料厚度为1㎝时,每小时透过水蒸气的微克数。其单位为μg/cm·h·mmHg。

6 吸附和凝露会使材料表面形成一层水膜。这层水膜将引起材料润湿,材料被水润湿的程度可用润湿角α来表征:
当润湿角α<90°时,材料可被认为是亲水性的;当润湿角α﹥90°时,材料可被认为是憎水性的。

7 亲水性——当物体表面对水分子的吸引力大于水的表面张力时,此时润滑湿角α<90º,α角越小,表示物体的亲水性越强。亲水性的物体容易使水在其表面上形成一层水膜,水膜使物体润湿,并使水沿着物体表面向内部渗入。 憎水性——当物体表面对水分子的吸引力小于水的表面张力时,此时润滑湿角α>90º,α角越大,表示物体憎水性越强。憎水性物体使水在其表面上收缩成不相连的小水珠,物体表面不易被润湿,水分子也不易渗入物体内部。

8 防潮湿措施 防潮湿措施有憎水处理、浸渍、灌封、密封等方法。 憎水处理是利用憎水物质,通过一定方法,在元件、零件表面形成憎水性膜,或者使某些物质发生化学变化而使材料变成憎水性。 浸渍是将被处理的元件或材料浸入不吸湿的绝缘液中,经过一段时间,使绝缘液进入材料的小孔、毛细管、缝隙和结构间的空隙,从而提高了元件材料的防潮湿性能以及其它性能。 蘸浸是把被处理的材料或元件短时间(几秒钟)地浸在绝缘液中,使材料或元件表面形成一层薄绝缘膜,也可以用涂覆的办法在材料或元件表面上涂上一层绝缘液膜。

9 灌封或灌注 在元器件本身或元器件与外壳间的空间或引线孔中,注入加热熔化后的有机绝缘材料,冷却后自行固化封闭。此种工艺叫灌封或灌注。
密封就是将零件、元件、部件或一些复杂的装置,甚至整机安装在不透气的密封盒中,这种方法属于机械防潮。 密封是防止潮气长时期影响的最有效方法。密封不仅可以防潮,而且还可以防水、防低气压、防盐雾、防霉、防灰尘。

10 各种防潮措施的适用范围 在正常气候条件下为了提高某些非金属材料、纤维材料和线圈类元器件的防潮能力、耐热能力、抗电强度以及机械强度等,可采用憎水处理、蘸渍、浸渍处理和灌封处理。对于金属材料的防潮,则多采用表面覆盖。 憎水处理和蘸渍处理多用来作为其他防潮处理后的辅助处理,以进一步加强其防潮性能。 浸渍和灌封处理应根据使用条件和要求选择适当的浸渍、灌封材料 。 密封措施主要用于恶劣的气候条件 。

11 盐雾的防护 盐雾的危害性主要是对金属及各种金属镀层的强烈腐蚀。。 盐雾是由于海水被海风(包括巨大的台风)吹卷及海浪对海岸冲击时飞溅的海水微滴被卷入空中,与潮湿大气结合形成带盐分的雾滴,称为盐雾。 防护方法主要是在一般电镀的基础上进行加工,即严格电镀工艺保证镀层厚度,选择适当的镀层种类。

12 霉菌的防护 霉菌属于细菌中的一个类别,它生长在土壤里,并在多种非金属材料的表面上生长。霉菌在适宜的气候环境下(温度15—35℃、相对湿度高于70%)繁殖非常快。霉菌所分裂出来的孢子很小(1μm以下),很易于随空气侵入产品。霉菌是靠自身分泌的酶在潮湿条件下分解有机物而获取养料的,这个分解过程就是霉菌侵蚀与破坏材料的根本原因。 霉菌侵蚀会降低材料的机械强度甚至使材料腐烂脆裂;另外可改变材料的物理性能与电性能;侵蚀金属或金属镀层表面,使之表面被污染甚至引起腐蚀。许多有机绝缘材料霉菌侵蚀后,由于分泌出酸性物,而使绝缘电阻大幅度降低;使电子线路的频率特性发生变化。此外,霉菌还会破坏元件和设备的外观,以及给人的身体造成毒害作用。

13 防霉措施: ①密封防霉。将产品严格密封,并加入干燥剂,使其内部空气干燥、清洁。 ②控制环境条件,防止霉菌滋生。如采取措施把温度降低到10℃以下,绝大部分霉菌就无法生长;用足够的紫外线辐射、日光照射,以及定期对无线电产品通电增温降低湿度,也能有效地阻止霉菌生长。 ③应用防霉剂。 ④使用防霉材料。

14 金属的防护 金属的腐蚀是指金属或合金跟周围接触到的介质进行化学反应而遭到破坏腐蚀的过程。当金属零件发生腐蚀后,不仅使零件表面遭到损害,而且会使零件的机械强度下降,影响电器性能,使产品不能可靠工作。 金属腐蚀可分为化学腐蚀和电化学腐蚀两类。 化学腐蚀是金属跟接触到的物质(一般是非电解质)直接发生化学反应而引起的一种腐蚀。 电化学腐蚀是当金属与电解液发生作用时产生的腐蚀。

15 金属的防护方法 (1)改变金属的内部组织结构。例如,把铬、镍等加入普通钢里制成的不锈钢。
(2)表面覆盖。就是在零件的表面覆盖致密的金属或非金属覆盖层。表面覆盖层按其性质可分为以下三类:金属覆盖层、化学覆盖层、涂料覆盖层。 (3)电化学保护法。因金属的腐蚀主要是电化学腐蚀,所以,只要能够把引起金属电化学腐蚀的原电池反应消除,金属的腐蚀自然就可以防止了。

16 金属覆盖:金属覆盖层是用电镀、化学镀、喷镀和热浸等方法,在本体金属表面镀上一层有良好的化学稳定性(即抗腐蚀性)和某些物理性能(如导电性、耐磨性)的金属。
化学覆盖:化学覆盖是用化学或电化学的方法在金属表面形成一层致密而稳定的金属化合物。化学覆盖有:发蓝(黑)、氧化、钝化、阳极氧化和磷化等。 涂料覆盖:涂料覆盖是在金属表面涂油漆、矿物性油脂或覆盖搪瓷、塑料等物质。

17 电化学保护法可分为外加电流的阴极保护和牺牲阳极的阴极保护法。
外加电流的阴极保护法是在外加直流电压的情况下,把需要保护的金属接电源的负极(阴极),而用不溶性的物质接正极(阳极),两者都放在电解质溶液里,接上外加直流电源。

18 通电后,大量电子被强制流向被保护的金属,使金属表面产生负电荷(电子)的积累。由于金属氧化所生成的电子流是跟外加电源的电流的方向是相反的,只要外加足够的电压,金属腐蚀而产生的原电池电流就不能被电子输送,因而腐蚀就不能发生。这样就抑制了金属发生失去电子的作用,从而防止了金属的腐蚀。 牺牲阳极的阴极保护法是在要求保护的金属上连结一种金属电位更低(也即更活泼,更易失去电子)的金属或合金,当两者处于电解质溶液中时,发生腐蚀的将是电位低的金属,而电位高的(要求保护的)金属得到了保护。

19 2.2 电子产品的散热及防护 电子产品工作时其输出功率往往只占输入功率的一小部分,其功率损失一般都以热能的形式散发出来。实际上,电子产品内部任何具有实际电阻的载流元器件都是一个热源。当电子产品工作时,温度将升高。 电子产品工作时的温度与产品周围的环境温度有密切的联系,当环境温度较高或散热困难时,电子产品工作时所产生的热能难以散发出去,将使电子产品温升提高。 由于电子产品内的元器件都有一定的工作温度范围,若超过其极限温度,就要引起工作状态改变,寿命缩短甚至损坏。 电子产品的热设计,就是根据传热学的基本原理,采取各种散热手段,使电子产品的工作温度不起过其极限温度,从而保证电子产品在预定的环境条件下稳定可靠地工作。

20 热的传导方式 传热的基本方式有三种,即传导,对流和辐射。 热传导是指通过物体内部或物体间直接接触来传播热能的过程。热传导是通过物体内部或物体接触面间的原子,分子以及自由电子的运动来实现能量传播的。 Q=△t/RT 式中 Q ——单位时间内热传导的热量; △t——热传导时的温度差(℃); RT ——热阻(℃/W)。

21 热阻是热流途径上的阻力大小。它包括热流通过物体内时的阻力,称为物体导热热阻Rs和热流通过两接触面时阻力,称为接触热阻Rc 。
RT =∑Rs+∑Rc 而 Rs=δ/(λ·S) Rc=1/(kc·S) 式中 δ——传热路径的长度(m); S ——传导截面积(m2); λ——导热系数(W/m·℃); kc——接触传热系数(W/m2·℃)

22 热对流 热对流是依靠发热物体(或高温物体)周围的流体(气体或液体)将热能转移的过程。 Q=α·△t·S
式中 Q ——单位时间内对流所排出的热量(W); α——散热系数(W/m2·℃); △t——散热物体表面与冷却介质的温度差(℃); S ——散热面积(m2)。 散热系数不仅与流体介质的性质有关,而且与对流的类型、对流的速度、散热物体的形状、位置等因素有关。

23 热辐射 热辐射是一种以电磁波(红外波段)辐射形式来传播能量的现象。热辐射是由于温度升高,物体原子振动的结果引起的。 Q =c·S[(T2/100) 4 -(T1/100)4] 式中 Q ——单位时间内辐射放出的热量(W); c ——辐射系数(W /m2·K4); S ——物体的辐射表面积(m2); T2、T1——该物体及空气的绝对温度(K)。

24 利用热传导、对流及辐射,把产品中的热量散发到周围的环境中去称为散热。
散热防热的主要措施   利用热传导、对流及辐射,把产品中的热量散发到周围的环境中去称为散热。 电子产品常用的散热方法有: ①自然散热; ②强迫通风散热; ③液体冷却; ④蒸发冷却; ⑤半导体制冷。

25 自然散热 自然散热是利用产品中各元件及机壳的自然热传导,自然热对流,自然热辐射来达到散热的目的。 (1)机壳自然散热
电子产品的机壳是接受产品内部热量并将其散到周围环境中去的机械结构,它在自然散热中起着重要作用。 机壳自然散热以下问题: ①选择导热性能好的材料做机壳,加强机箱内外表面的热传导。 ②为了提高机壳的热辐射能力,可在机壳内外表面涂粗糙的黑漆。 ③在机壳上,合理地开通风孔,可以加强气流的对流换热作用。

26 在机壳上开通风孔 的形式

27 (2)电子产品内部的自然散热。 ①元器件的自然散热 电阻主要通过传导散热。因此在装配电阻时,引线应尽可能短一些,并且要加大与其它元件的距离。其它元器件类似于电阻。 变压器主要依靠传导散热,要求铁心与支架、支架与固定面都要良好接触,使其热阻最小。 晶体管依靠管壳及引线的对流、辐射和传导散热。大功率的晶体管应该采用散热器散热。 集成电路主要依靠外壳及引线的对流、辐射和传导散热。当集成电路的热流密度超过0.6W/㎝2时 ,应装散热装置,以减少外壳与周围环境的热阻。

28 ②元器件的合理布置 保持足够的距离,以利于空气流动,增强对流散热。 将功率大、发热量大本身又耐热的元器件放在气流的下游(出口处),将功率小、发热量小又不耐热的元器件放在气流的上游(入口处)。 如按上述原则安排有困难,可发热量大元器件和热敏感元件进行热屏蔽。

29 强制散热 强制风冷。强制风冷是利用风机进行鼓风或抽风,提高产品内空气流动的速度,增大散热面的温差,达到散热的目的。
液体冷却。由于液体的导热系数、热容量和比热都比空气大,利用它作为散热介质其效果比空气要好。 蒸发冷却。每一种液体都有一定的沸点,当液体温度达到沸点时就会沸腾而产生蒸汽,从沸腾到形成蒸汽的过程称为液体的汽化。液体汽化时要吸收热量。蒸发冷却就是利用液体在汽化时能吸收大量热量的原理来冷却发热器件的。

30 半导体致冷。也叫温差电致冷,它是建立在珀尔帖效应的基础上的一种冷却方法。当任何两种不同的导体组成一电偶对,并通以直流电时,在电偶对的相应接头处就会发生吸热和放热现象。但这种效应在一般的金属中很弱,而在半导体材料中则比较显著,因此可用半导体作致冷元件。

31 2.2.3功率晶体管及集成电路芯片的散热 晶体管和集成电路在工作时要产生功耗,即集电极功耗Pc,其产生的热量会使结温度升高。如果没有良好的散热,结温度将超过最大允许结温度TjM,就会缩短管子寿命,甚至有烧坏的危险。 TjM = Ta + RTPCM 式中RT为热电阻,Ta为环境温度,PCM为最大允许的集电极功耗。 一般采用的散热器散热,下图为常用的散热器 。

32 机械因素的隔离 电子产品在使用、运输和存放过程中,不可避免地会受到机械振动、冲击和其它形式的机械力的作用,如果产品结构设计不当,就会导致电子产品的损坏或无法工作。 造成损坏情况有两种:一种是由于设计不良引起共振和抗冲击能力差。另一种是疲劳损坏,虽然振动和冲击加速度未超过极限值,但在长时间的作用下,产品及其元器件,零部件因疲劳作用而降低了强度,最后导致损坏。

33 2. 3. 1减振和缓冲的基本原理 在实际中所见到的持续振动,是靠外界的激振力对弹性系统做功,即输入能量以弥补阻尼所消耗的能量。
Pm-惯性力 Pk-弹性力 Pr-阻尼力

34 强迫振动的振幅A与外激振动的振幅Aj有以下关系:
ζ —— 阻尼比,ζ = r /r0 γ —— 频率比,外激振动的频率ƒj和系统固有频率ƒ0之比,即:γ = ƒj / ƒ0 = ωj / ω0

35 对于确定的弹性系统,其阻尼比ζ也是确定不变的。当外激振动参数已知时,决定系统强迫振动振幅大小的只有频率比γ,也就是说,系统强迫振动的振幅大小与激振频率ƒj及系统固有频率ƒ0有关。由上式可得出以下结论:
①当ƒj<<ƒ0 时,γ接近于0,强迫振动的振幅A等于外激振的振幅Aj。即A=Aj ; ②当 ƒj < ƒ0时,γ<1,强迫振动的振幅A大于外激振动的振幅Aj,即A> Aj ; ③当ƒj=ƒ0时,γ=1,A>>Aj,此时如果阻尼比ζ越小,A比Aj大的倍数越多。而当ζ→0则A→∞,也就是说,当ƒj=ƒ0 时,系统将发生共振现象; ④当ƒj= √2ƒ0 时,γ=√2 ,强迫振动的振幅A等于外激振动的振幅Aj ,即A=Aj ; ⑤当ƒj>√2ƒ0 时,γ > √2,A< Aj ; ⑥当ƒj>>ƒ0 时,γ >>√2 ,A< Aj它与γ >√2 时的变化不大。

36 减振的基本原理 根据前面分析可以看出,只有当ƒj> √2ƒ0 的情况下,强迫振动的振幅A才能小于外激振动的振幅A j 。也就是说只有当ƒj >√2 ƒ0 , γ>√2时强迫振动才不会造成不良后果。 在电子产品上安装减振器,使产品和减振器构成一弹性系统,从要求系统减低或隔离的需要出发,使 ƒj > √2ƒ0 就能得到良好的减振效果。 减振器的物理作用,因为振动是方向不断改变的机械作用,当装上适当的减振器后,减振器能将支撑基座传来的机械作用的能量储存起来,并缓慢地传到产品上去,当还来得及将全部量传给产品时,支撑基座又开始反方向运动了,这时能量由减振器重新交还给支撑基座。以后又重复前面的过程,如此循环下去,就使产品所受的振动作用大为减小。

37 缓冲的基本原理 缓冲是防止电子产品免受碰撞和冲击的一种重要措施。
由能量定理P = F t可知:当外来冲击能量P一定时,若冲击力作用的时间t愈长,则设备所受的冲击力F愈小,冲击加速度愈小(F = ma)。因此若加大冲击力作用的接触时间,就可以减轻产品所受冲击力作用的影响。缓冲设计实质上是把瞬时的、强烈的碰撞和冲击能量,以位能的形式最大限度地储存在冲击减振器中,使减振器产生较大的形变。冲击结束后,冲击减振器的能量,由减振系统缓慢地将能量释放出来,达到保护电子产品的目的。

38 1、电子产品的减振和缓冲主要是依靠安装减振器。 橡皮-金属减振器 JZN型阻尼式减振器
减振和缓冲的一般措施 1、电子产品的减振和缓冲主要是依靠安装减振器。 橡皮-金属减振器 JZN型阻尼式减振器

39 2.减振和缓冲的其它措施 (1)导线和电缆。 通常都尽量将几根导线编扎在一起,并用线夹作分段固定,以提高其固有频率,提高抗冲击振动能力。但单线连接有时是不可避免的,这时使用多股导线比单股硬导线好,跳线不能过紧也不能过松。若过紧,在振动时由于没有缓冲而易造成脱焊或拉断;若过松,在振动时易引起导线摆动造成短路。

40 (2)电容器和电阻器 电容器一般采用立装和卧装两种方式,卧装抗振能力强,为了提高其抗振能力,立装应尽量剪短引线,最好垫上橡皮、塑料、纤维、毛毡等;卧装可用环氧树脂固定。 电阻为了提高抗振能力,也应采用卧装。 不好 不好 较好 好 好 连接处易拆断 过高易倒 不好

41 (3)晶体管 大功率晶体管应与散热器一起用螺栓固定在底板或机壳上。
小功率晶体管一般采用立装,为了提高其本身能抗冲击和振动能力,可以卧装、倒装,并用弹簧夹、护圈或粘胶(如硅胶、环氧树脂)固定在印刷板上。 大功率晶体管应与散热器一起用螺栓固定在底板或机壳上。

42 (4)继电器 继电器和其他电气元件不一样,由电气和机械结构组合在一起,它本身容易失效,在冲击和振动的影响下,继电器的典型故障有:接触不良;衔铁动作失灵或移位;触点抖动使接触电阻不断变化干拢电路工作等。 最好 好 差

43 (5)变压器等较重的元器件,应尽量安装在产品的底层,利用变压器铁心的穿心螺栓将框架和铁心牢固地固定在底板上,其螺栓应有防松装置。
(6) 印制电路板较薄,易于弯曲,故需要加固。 (7) 机架和底座的结构可根据要求设计成框架薄板金属盒或复杂的铸件。 (8)对特别怕振动的元器件、部件(如主振回路元件),可进行单独的被动隔振,对振动源(如电动机)也要单独进行主动隔振。调谐机构应有锁定装置,紧固螺钉应有防松动装置。陶瓷元件及其他较脆弱的元件和金属零件联接时,它们之间最好垫上橡皮、塑料、纤维、毛毡等衬垫。

44 2. 4 电磁干扰的屏蔽 在电子产品的外部和内部存在着各种电磁干扰,干扰会影响或破坏产品的正常工作。
电磁干扰的屏蔽 在电子产品的外部和内部存在着各种电磁干扰,干扰会影响或破坏产品的正常工作。 外部干扰是指除电子产品所要接收的信号以外的外部电磁波对产品的影响。其中有些是自然产生的,如宇宙干扰、地球大气的放电干扰等。有些是人为的,如电焊机、电吹风所产生干扰等。 内部干扰是由于产品内部存在着寄生耦合。寄生耦合有电容耦合、电感耦合,这不是人为设计的。 为了保证电子产品正常地工作,就需要防止来自产品外部和内部的各种电磁干扰。

45 2. 4. 1 电场的屏蔽 电场的屏蔽是为了抑制寄生电容耦合(电场耦合),隔离静电或电场干扰。
电场的屏蔽 电场的屏蔽是为了抑制寄生电容耦合(电场耦合),隔离静电或电场干扰。 寄生电容耦合:由于产品内的各种元件和导线都具有一定电位,高电位导线相对的低电位导线有电场存在,也即两导线之间形成了寄生电容耦合。 通常把造成影响的高电位叫感应源,而被影响的低电位叫受感器。实际上凡是能幅射电磁能量并影响其它电路工作的都称为感应源(或干扰源),而受到外界电磁干扰的电路都称为受感器。 电场屏蔽的最简单的方法,就是在感应源与受感器之间加一块接地良好的金属板,就可以把感应源与受感器之间的寄生电容短接到地,达到屏蔽的目的。

46 2. 4. 2 磁场的屏蔽 磁场的屏蔽主要是为了抑制寄生电感耦合(也叫磁耦合)。
磁场的屏蔽 磁场的屏蔽主要是为了抑制寄生电感耦合(也叫磁耦合)。 磁场屏蔽随着工作频率不同所采用的磁屏蔽材料和磁屏蔽原理也不同。 1.恒定磁场和低频磁场的屏蔽 对于恒定磁场和低频(低于100kHZ)磁场采用导磁率高的铁磁性材料做屏蔽物。其原理是利用铁磁材料的高导磁率对干扰磁场进行分路。

47 式中 μ——相对导磁系数(相对导磁率); S——磁路横截面积; lc——磁路长度。
磁场有磁力线,磁力线通过的主要路径为磁路,与电路具有电阻一样,磁路也有的 磁阻Rc。 式中 μ——相对导磁系数(相对导磁率); S——磁路横截面积; lc——磁路长度。

48 将铁磁材料置于磁场中时,由于铁磁材料的μ比空气的 μ高得多,因此,铁磁材料的磁阻Rc比空气的磁阻Rc小得多,磁通将主要通过铁磁材料,而通过空气的磁通将大为减小,从而起到磁场屏蔽作用。

49 2.高频磁场的屏蔽 在一个均匀的高频磁场中,放置一金属圆环,那么,在此金属环中将产生感应涡流,此涡流将产生一个反抗外磁场变化的磁场。此磁场的磁力线在金属圆环内与外磁场磁力线方向相反,在圆环外方向相同。结果使得金属圆环内部的总磁力线减少,即总磁场削弱,而圆环外部的总磁力线增加,即总磁场加强。从而发生了外磁场从金属圆环内部被排斥到金属圆环外面去的现象。

50 如果在外磁场中放置一块金属板,金属板可以看成是由若干个彼此短路的圆环所组成。那么,由于涡流排斥外磁场的作用,反抗外磁场通过金属板将外磁场排斥到金属板外面。故金属板就成为阻止外磁场通过的屏蔽物。这种屏蔽方式称为屏蔽物对磁场排斥。

51 电磁场的屏蔽 除了静电场和恒定磁场外,电场和磁场总是同时出现的。 从上面电场屏蔽和高频磁场屏蔽的讨论中可以看出,只要将高频磁场的屏蔽物良好地接地,就能同时达到电场屏蔽的要求,即达到电场和磁场同时屏蔽的目的。

52 2. 4. 4 屏蔽的结构形式与安装 (1)线圈屏蔽罩的结构
屏蔽的结构形式与安装 (1)线圈屏蔽罩的结构 线圈屏蔽罩的结构既要满足屏蔽要求,又要尽量减小对线圈参数的影响,并且还应在允许的体积范围之内。 为了使屏蔽线圈的品质因数下降不超过10%,电感量减小不超过15-20%,圆形屏蔽罩的直径和高度应足够大。 在同样的空间位置上安装方形屏蔽罩的效果比圆形的为好。 屏蔽罩上缝隙、切口的方向,必须注意不切断涡流的方向,最好是避免有缝隙和切口 。

53 (2)线圈及其屏蔽罩的安装 线圈应垂直地安装于底座上。此时,线圈的磁通与底座的交链最小,在底座中感应的电流也小,底座对线圈的参数L、Q和分布电容影响也小。此外垂直安装也比较方便。 线圈平行于底座的安装是不正确的。不仅没有垂直安装的优点,而且由于线圈与底座平行安装,屏蔽罩与底座的接缝就垂直于涡流的方向,因此若接触不好而切断涡流或者使涡流减小,则会严重影响屏蔽效果。

54 2.低频变压器的屏蔽 ⑴变压器的屏蔽结构。因为铁芯起着集中磁通的作用,所以变压器的铁芯本身就是一个磁屏蔽物。
若要进一步减小漏磁通的影响,则应采取屏蔽措施。 ①简易的屏蔽结构。简易的屏蔽结构有两种:一是在铁芯侧面包铁皮;一是在线包外面包一圈短路圈。

55 ②单层屏蔽罩。在变压器外面加一个屏蔽罩可进一步提高屏蔽效果。屏蔽罩的材料应用铁磁材料,屏蔽罩和铁芯之间和距离,一般留有2~3毫米。
③多层屏蔽罩。如果对屏蔽的要求很高或屏蔽的频率范围很宽,则应采用多层屏蔽。当多层屏蔽物的总厚度与单层屏蔽物的总厚度相同时,多层屏幕的效果比单层好得多。

56 (2)电源变压器。 电子产品常用交流市电供电,由于电源变压器的初、次级绕组之间存在着寄生电容,因此其它产品在供电电网中产生高频感应电压,就会通过此寄生电容而带进本产品中来产生干扰。为了抑制寄生耦合,往往在初、次级绕组之间垫上一层接地的铜箔作静电屏蔽。但是,此铜箔不应阻碍磁场耦合。因此,铜箔本身不能短路。

57 (3)变压器的安装。 ①变压器远离放大器, ②电源变压器的线圈轴线应与底座垂直放置。
③在安装变压器时,不要让硅钢片紧贴底座,应该用非导磁材料将变压器铁芯与底座隔开,以减少铁芯内的磁力线伸展 到底座中去与电路交链后产生交流声。 ④多个变压器或线圈安装位置较近时,应该使它们的线圈轴线相互垂直。 ⑤有条件时,电源部分最好单独装在一块底板上。 ⑥电源滤波电容器的接地端与电源变压器的接地点最好用导线连在一起,以免滤波器只的交流电经过底座耦合到其它电路。

58 3.电路的屏蔽 (1)电路单元的屏蔽 电子产品的正常功能受到破坏的原因,不仅是由于信号在电气装置连线上产生失真,或在电气安装连线上出现交叉干扰,而且还来源于设备内不同单元之间的相互干扰。 (2)屏蔽的结构形式与安装 ①屏蔽隔板。 ②共盖屏蔽结构。 屏蔽隔板结构 共盖屏蔽结构

59 ③单独屏蔽。单独屏蔽,就是将要屏蔽的电路和元件、部件装在独立的屏蔽盒中,使之成为一个独立部件。
④双层屏蔽。当干扰电场很强时,用单层屏蔽不能满足要求,而必须采用双层屏蔽,即在一个屏蔽盒外面再正确地加一个屏蔽盒。


Download ppt "第 2 章 电子产品的防护 2.1 气候因素的防护   2.2 电子产品的散热及防护 2. 3 机械因素的隔离 2. 4 电磁干扰的屏蔽."

Similar presentations


Ads by Google