Download presentation
Presentation is loading. Please wait.
1
Short Version : 9. Systems of Particles 短版: 9.多質點系统
2
9.1. Center of Mass 質心 N particles 質點 :
= total mass 總質量 = Center of mass 質心 = mass-weighted average position 質量加權的平均位置 with 3rd law 第三定律 Cartesian coordinates: 卡氏座標 Extension: “particle” i may stand for an extended object with cm at ri . 延伸: “質點” i 可代表一個 CM 在 ri 的延綿物體。
3
Example 9.2. Space Station 太空站
A space station consists of 3 modules arranged in an equilateral triangle, connected by struts of length L & negligible mass. 一太空站由三個模組,以質量可忽略,長度為 L 的支柱,連成一等邊三角形。 2 modules have mass m, the other 2m. 兩模組的質量為 m,另一個為 2m 。 Find the CM. 求質心。 Coord origin at m2 = 2m & y points downward. 座標原點在 m2 = 2m 且 y 朝下。 2: 2m x 30 L H CM obtainable by symmetry 可以對稱性導得 1: m 3:m y
4
Continuous Distributions of Matter 物質的連續分佈
Discrete collection 離散組合 : Continuous distribution 連續分佈: 原點隨便 Let be the density of the matter. 設 為物質的密度
5
Example 9.3. Aircraft Wing 飛機翼
A supersonic aircraft wing is an isosceles triangle of length L, width w, and negligible thickness. 一架超音速飛機的翼是一個等腰三角形,長 L ,寬 w ,厚度則可忽略。 It has mass M, distributed uniformly. 它的質量 m 分佈均勻。 Where’s its CM? 它的質心在哪? Density of wing 翼的密度 = . Coord origin at leftmost tip of wing. 座標原點在翼的最左端 By symmetry 由對稱性, y dm h w x L
6
Example 9.4. Circus Train 馬戲班火車
Jumbo, a 4.8-t elephant, is standing near one end of a 15-t railcar, 一頭 4.8-t 的大象,阿大,站在一部 15-t 的火車廂的一端。 which is at rest on a frictionless horizontal track. 火車廂停在一條無摩擦的水平鐵軌上 Jumbo walks 19 m toward the other end of the car. 阿大朝車廂的另一端走 19m 。 How far does the car move? 車廂移動多遠? 1 t = 1 tonne 公噸 = 1000 kg Car not moving x cm Car moved 19+xJi Jumbo walks, but the center of mass doesn’t move (Fext = 0 ). 阿大有在走,可是質心不動 ( Fext = 0 ) 。
7
Alternative Solution 另一解
relative to ground 相對於地 relative to car 相對於車廂 19m + xc 19m xc
8
9.2. Momentum 動量 Total momentum: 總動量: M constant 不變
9
Conservation of Momentum 動量守恆
Conservation of Momentum 動量守恆 : Total momentum of a system is a constant if there is no net external force. 如果沒有淨外力,一個系統的總動量是個常數。
10
Conceptual Example 9.1. Kayaking 划獨木舟
Jess (mass 53 kg) & Nick (mass 72 kg) sit in a 26-kg kayak at rest on frictionless water. 潔西 (質量53 kg) 和尼克 (質量 72 kg) 坐在一條停在無摩擦的水上, 26-kg 的獨木舟上。 Jess toss a 17-kg pack, giving it a horizontal speed of 3.1 m/s relative to the water. 潔西拋出一個17-kg 的背包,給了它相對於水 3.1 m/s 的水平速率。 What’s the kayak’s speed after Nick catches it? 在尼克接住它之後,獨木舟的速率為何? Why can you answer without doing any calculations ? 為甚麼你不用計算就可以回答 ? Initially, total p = 開始時,總 p = 0. frictionless water p conserved 水無摩擦 p 守恆 After Nick catches it , total p = 尼克接住它之後,總 p = 0. Kayak speed = 獨木舟的速率 = 0. Simple application of the conservation law. 祇是守恆定律的簡單應用。
11
Making the Connection 連起來
Jess (mass 53 kg) & Nick (mass 72 kg) sit in a 26-kg kayak at rest on frictionless water. 潔西 (質量53 kg) 和尼克 (質量 72 kg) 坐在一條停在無摩擦的水上, 26-kg 的獨木舟上。 Jess toss a 17-kg pack, giving it a horizontal speed of 3.1 m/s relative to the water. 潔西拋出一個17-kg 的背包,給了它相對於水 3.1 m/s 的水平速率。 What’s the kayak’s speed while the pack is in the air & after Nick catches it? 當背包在空中,和在尼克接住它之後,獨木舟的速率為何? Initially 開始時 While pack is in air 當背包在空中: After Nick catches it 在尼克接住它之後 : Note: Emech not conserved 注: Emech 不守恆
12
Example 9.5. Radioactive Decay 放射性衰變
A lithium-5 ( 5Li ) nucleus is moving at 1.6 Mm/s when it decays into 一個鋰-5 ( 5Li ) 原子核以 1.6 Mm/s 移動時衰變成 a proton ( 1H, or p ) & an alpha particle ( 4He, or ). [ Superscripts denote mass in AMU ] 一個質子( 1H, 或 p ) 和一個阿爾發粒子( 4He,或 ). [上標表示以 AMU為單位的質量] is detected moving at 1.4 Mm/s at 33 to the original velocity of 5Li. 茲測得 以 1.4 Mm/s 在與 5Li 原來速度成 33 的方向移動。 What are the magnitude & direction of p’s velocity? p 的速度的大小和方向為何? Before decay: 衰變之前 After decay: 衰變之後
13
9.3. Kinetic Energy of a System 一個系统的動能
14
Momentum in Collisions 碰撞時的動量
External forces negligible Total momentum conserved 外力都可以忽略 總動量守恆 For an individual particle 單一粒子 t = collision time 碰撞時間 impulse 衝力 More accurately,更精確的說法 Same size 同樣大小 Average 平均值 Crash test 撞車測試
15
Energy in Collisions 碰撞時的能量
Elastic collision: K conserved. 彈性碰撞: K 守恆 。 Inelastic collision: K not conserved. 非彈性碰撞: K 不守恆 。 Bouncing ball: inelastic collision between ball & ground. 彈跳中的球:球與地非彈性碰撞。
16
9.5. Totally Inelastic Collisions 完全非彈性碰撞
Totally inelastic collision: colliding objects stick together 完全非彈性碰撞:相撞的物體粘在一起。 maximum energy loss consistent with momentum conservation. 動量守恆所容許的最大能量消耗。
17
Example 9.9. Ballistic Pendulum 彈道單擺
The ballistic pendulum measures the speeds of fast-moving objects. 彈道單擺可用來測量快速物體的速率。 A bullet of mass m strikes a block of mass M and embeds itself in the latter. 一質量為 m 的子彈擊中並嵌入一質量為 M 的質塊。 The block swings upward to a vertical distance of h. 質塊上擺高度為 h。 Find the bullet’s speed. 求子彈的速率。 Caution小心: ( heat is generated when bullet strikes block ) 子彈撞擊質塊時產生熱量
18
9.6. Elastic Collisions 彈性碰撞
Momentum conservation: 動量守恆 Energy conservation: 能量守恆 Implicit assumption: particles have no interaction when they are in the initial or final states. ( Ei = Ki ) 不明文假定:在始和終態時粒子間無作用。 ( Ei = Ki ) 2-D case 二維系统 : number of unknowns 未知數個數 = 2 2 = ( final state 終態 : v1fx , v1fy , v2fx , v2fy ) number of equations 方程式個數 = 2 +1 = 3 1 more conditions needed. 欠一個條件方程。 3-D case 三維系统 : number of unknowns 未知數個數 = 3 2 = 6 ( final state 終態 : v1fx , v1fy , v1fz , v2fx , v2fy , v2fz ) number of equations 方程式個數 = 3 +1 = 4 2 more conditions needed. 欠二個條件方程。
19
Elastic Collisions in 1-D 一維彈性碰撞
1-D collision 一維碰撞 1-D case 一維系统: number of unknowns 未知數個數 = 1 2 = ( v1f , v2f ) number of equations 方程式個數 = 1 +1 = 2 unique solution. 解答獨一無二。 This is a 2-D collision 這是二維碰撞
20
mom. cons. 動量守恆 rel. v reversed 相對速度反轉 (a) m1 << m2 :
(b) m1 = m2 : (c) m1 >> m2 : Mathematica
21
Elastic Collision in 2-D 二維彈性碰撞
Impact parameter 撞擊參數 b : additional info necessary to fix the collision outcome. 要决定碰撞結果所需的額外資訊。 Mathematica
22
Example Croquet 槌球 A croquet ball strikes a stationary one of equal mass. 一個槌球撞上另一個和它質量相同的靜止槌球。 The collision is elastic & the incident ball goes off 30 to its original direction. 碰撞是彈性的,而且入射球後來的方向與原來的成 30 。 In what direction does the other ball move? 另一球往那個方向走? p cons 守恆: E cons 守恆:
23
Center of Mass Frame 質心框
碰撞點 Mathematica
Similar presentations