Presentation is loading. Please wait.

Presentation is loading. Please wait.

國中基本學科能力測驗數學科 社會五 劉紀谷.

Similar presentations


Presentation on theme: "國中基本學科能力測驗數學科 社會五 劉紀谷."— Presentation transcript:

1 國中基本學科能力測驗數學科 社會五 劉紀谷

2 試題判斷標準 1.數學概念的融合及運用。 2.難易度、鑑別度、誘答力。 3.國中生數學能力的範圍。 4.創意與新奇性。

3 理想試題一 求2001 × × 2004=? (A)6 (B)16 (C)26 (D)36

4 原式變成(A+1) ×(A+2)-(A-1) ×(A+4) 展開變成(A+3A+2)-(A+3A-4)=6

5 理想的理由 1.運用數字彼此之間的關聯性。 2.不曉得運用此關聯性的學生將容易算錯,有鑑別度。 3.考驗學生冷靜分析思考的能力。

6 理想試題二 如圖(四),△ASH為直角三 角形,其中∠A=90°,L為 SH的中垂線,交AH於R點。 若AS=3,SH=5,則RH=?
(B)2 (C)25/8 (D)2.5 A H 3 5 S L 圖(四)

7 R a 4-a A H 3 a 5 L S

8 理想的理由 1.考驗學生理解圖形關係及作圖的能力。 2.類似隱圖測驗的意義,頗副創意。 3.畢氏定理。 4.假設未知數。

9 理想試題三 如圖(五) ,兩圓相交於 A、 B兩點。若C、 B、 D三點共線,BC=90 °, ABC=160 °,則ABD=?

10 A ˙ 200° ˙ 160° 160° 100° 200° 80° C B D

11 理想的理由 1.圓形與三角形的結合。 2.圓心角與圓周角。 3.能否點出圓心,頓悟出圓心角與圓周角之間的關係。

12 不理想試題一 如圖(二) ,直線L的方程式 為X+Y-3=0。請問P、Q、R 、S四點中,哪一點的座標 是此方程式的解? (A)P (B)Q
(C)R (D)S Y L Q ˙ P R ˙ ˙ X O ˙ S 圖(二)

13 不理想的理由 1.二元一次方程式數線與解的關係用圖形來表示太簡易。 2.答案太過明顯,其他選項較無誘答力。

14 修改後的試題 直線L的方程式為X+Y-3=0。請問 P(4,-7)、Q(2,-5)、R(1,2)、S(4,1)
四點中,哪一點座標是此方程式的解? (A)P (B)Q (C)R (D)S

15 不理想試題二 如圖(八),有一扇形,OA=8公分 ,∠AOB=135°,求AB的長為多 少公分? (A)3π (B)6π (C)12π
(D)24π A 8 O 135° B 圖(八)

16 不理想的理由 1.扇形的相關計算在國小六年級上學期的數學課本裡就有,難度較低,較無鑑別度。
2.用圖形出題較為簡易,國中生的認知發展階段已到達形式運思期,具有抽象思考的能力。

17 修改後的試題 一位少林武僧手持2公尺的長棍,由右向左 虎虎生風地揮舞,其揮舞的角度恰為135°, 請問該位少林武僧所使用的長棍其末端揮舞
的軌跡長度是多少公尺? (A)3/2π (B)3π (C)2/3π (D)4π

18 不理想試題三 1 2 7 3 1 求-9 - × [ - ( - )]之值為何? (A)-10 (B)- (C)- (D)- 4 5 4 8
求 × [ ( )]之值為何? (A)-10 (B)- (C)- (D)- 4 5 4 8 2 99 10 17 2 43 5

19 不理想的理由 1.通分的四則運算是國小六年級上學期的教材,難度較低、較無鑑別力。 2.先乘除後加減也是屬於國小的範圍。
3.只是純粹考符號的運算跟細心程度而已。

20 修改後的試題 求 ÷( × )之值為何? (A)70 (B)67 (C)84 (D)79 19 5 3 1 8 7 4 2

21 報告完畢 謝謝大家


Download ppt "國中基本學科能力測驗數學科 社會五 劉紀谷."

Similar presentations


Ads by Google