提高钛基高温合金抗氧化性能 的表面改性新方法 熊华平 中航工业 北京航空材料研究院 第三届民用飞机制造技术及装备论坛, 深圳, 7, March 2011
钛基高温合金: TiAl 基、 Ti 3 Al 基合金、 Ti60 钛合金 —— 很有潜力的航空、航天高温结构材料 发动机尾喷燃烧器; 高压压气机匣; 涡轮叶片等转动零部件; 高速飞行器的启动推进器耐热零件,等等。 1. 研究背景
性能 Ti60 合金 Ti 3 Al 基合金 TiAl 基合金 结构 近相近相 DO 19 L1 0 密度 /g · cm ~ ~3.9 弹性模量 /GPa ~ ~180 屈服强度 /MPa 800~ ~ ~600 断裂强度 /MPa 900~ ~ ~700 室温塑性 /% 6~10 3~8 1~2 室温断裂韧性 /MPa · m 1/2 40~50 13~30 12~35 蠕变极限 / ℃ ~800 抗氧化极限 / ℃ ~ 研究背景 随着温度的升高,会出现抗氧化性下降等问题!
需要研究提高 TiAl 基、 Ti 3 Al 基合金,以及 Ti60 钛合金 高温抗氧化性的方法; 已有的离子注入、磁控溅射、 PVD 、 CVD 等方法,难 以处理具有复杂形状的构件,而且需特殊的设备。 1. 研究背景
2. 表面改性新方法的实验和理论基础 The interfacial diffusion phenomenon for brazed Al/TiAl joint Al-Si brazing alloy Al TiAl 在使用空气加热炉的条件下,通过 Al-Si 合金熔体 对钛基高温合金进行浸渍反应 通过液相渗铝、渗硅的表面改性方法,提高 钛基高温合金的高温抗氧化性能。 Si 、 Al 分别在液态 Ti 中的溶解焓: -211 kJ/mol , -137 kJ/mol
空气加热炉 粘土坩锅中浸渍反应 反应时间短 适于形状复杂的工件 3. 具体的表面改性方法 熔化 Al-Si 合金 将 TiAl 浸入 Al-Si 熔体 保温一段时间 从 Al-Si 熔体中取出 TiAl 8% , 10% , 12.9% , 18%
(一) 液相渗铝、渗硅 对 TiAl 基合金的表面改性研究
4.1. Al-12.87wt.%Si (siliconizing temperature: 913 K~ 1053 K) 1.Al16-Si57.65-Ti24.16 (at.pct) 1. Al13.13-Si64.17-Ti Al34-Si47.71-Ti Al40.12-Si45.06-Ti14.24 Siliconized layer TiAl 研究结果与讨论 (a) 913 K/3min (a) 913 K/12min TiAl Reaction layer 1 2 Al-Si 合金
4.1. Al-12.87wt.%Si (siliconizing temperature: 913 K~ 1053 K) 1.Al15.47-Si57.81-Ti Al17.64-Si57.42-Ti23.62 (at.pct) TiAl Siliconized layer TiAl Siliconized layer 983 K/ 20min TiAl Siliconized layer K/ 3min K/ 20min
4.3. Al-10wt.%Si (siliconizing temperature: 953 K~ 1053 K) (a) 1013 K/ 10 min; (b) 1013 K/ 20 min; (c) 1053 K/10 min K/10 min; (d) 1053 K/20 min K/20 min
4.3. Al-10wt.%Si (siliconizing temperature: 953 K~ 1053 K) Two-step siliconizing process: 1053 K/20 min K/20 min
4.1. Al-12.87wt.%Si (siliconizing condition: 983 K/3min) The X-ray spectra of the surface of the TiAl-based alloy The siliconizing products: Ti 7 Al 5 Si 12 + Ti 5 Si 4 + TiSi 2 TiAl Siliconized layer 983 K/ 3min
4.3. Al-10wt.%Si ( 1053 K/10 min K/10 min ) TEM photo of the siliconized layer/TiAl interface Ti 5 Si 3 TiAl Ti-Si reaction band Siliconized layer
4.3. Al-10wt.%Si ( 1053 K/10 min K/10 min ) The blocky Ti 5 Si 3 grain s in the siliconized layer and the corresponding SAD pattern The needle-like Ti 5 Si 3 grain in the siliconized layer
The grain of Al 12 Si 3 Ti 5 compound and the corresponding SAD patterns 4.3. Al-10wt.%Si ( 1053 K/10 min K/10 min )
Ti+Al=TiAl (ΔG 1 ) (1) xTi+ySi=TixSiy (ΔG 2 ) (2) Therefore: xTiAl+ySi=TixSiy+Al (ΔG 3 ) (3) ΔG 3 = ΔG 2 -x ΔG 1 …………………………………… (4) The ΔG 3 value for Ti 5 Si 3, Ti 5 Si 4, TiSi and TiSi 2 is –51.5 kJ/mol, kJ/mol, kJ/mol and –106.6 kJ/mol respectively. The Ti-Si compounds can be formed spontaneously. Complicated siliconizing reactions: TiAl+(Al-Si)→(Ti-Si)+(Ti-Al-Si) ……………….. (5) 渗铝、渗硅过程中的化学反应
4.1. Al-12.87wt.%Si (siliconizing temperature: 913 K~ 1053 K) Arrhenius plots for the parabolic rate constant of the coating growth Change in thickness of the silicide coatings with square root of the siliconized time Q, Activation energy for growth of the silicide coatings: kJ/mol ; k, Parabolic rate constant : k= 2.24 exp( /RT) m 2 /s ………….(1) y 2 = 2.24 exp( /RT) t m 2 …… … … ………………………… ….(2) y 2 k exp(-Q/RT) t
4.1. Al-12.87wt.%Si (siliconizing temperature: 913 K~ 1053 K) Oxidation kinetics of the isothermal oxidation at 1173 K for 100 h Bare alloy Siliconized alloy Oxidation kinetics of the isothermal oxidation at 1273 K for 100 h
Cross-section of the bare alloy after oxidation X-ray diffraction patterns of the oxidized surface of the bare TiAl-based alloy TiO 2 and Al 2 O 3 TiO 2 TiAl After oxidation at 1273 K for 100 h
Cross-section of the siliconized TiAl-based alloy ( Oxidation: 1273 K/100 h ) 4.1. Al-12.87wt.%Si (After oxidation at 1273 K for 100hrs ) The complicated reactions during the isothermal oxidation : Ti 7 Al 5 Si 12 + TiSi 2 +O 2 SiO 2 + Al 2 O 3 +TiO 2 +Ti 5 Si 4 ….………….(1) TiAl+(Ti-Al-Si) (Ti-Si)+ (Ti-Al) …………………………………(2) Phases of the oxidized surface: (Ti 5 Si 3 + TiSi)+Al 2 O 3 +TiO 2 +SiO 2 Oxidized Surface Ti-Si TiAl 2 TiAl
4.2. Al-10wt.%Si (siliconizing temperature: 913 K~ 1053 K) Arrhenius plots for the parabolic rate constant of the coating growth Change in thickness of the silicide coatings with square root of the siliconized time Q, Activation energy for growth of the silicide coatings: kJ/mol ; k, Parabolic rate constant : k= exp( /RT) m 2 /s ………….(1) y 2 = exp( /RT) t m 2 …… … … ………………………… ….(2) y 2 k exp(-Q/RT) t
4.3. Al-10wt.%Si ( two-step siliconizing process ) Oxidation kinetics of the isothermal oxidation at 1273 K for 100 h for the bare and the siliconized TiAl-based alloys (w 2 Kp t ) 抛物线氧化 速率常数 Kp : 1/1050
4.4. Al-10wt.%Si Surface morphologies of the bare TiAl-based alloy (a), and the siliconized alloy (1053 K/20 min K/20 min) (b) after isothermal oxidation at 1273 K for 100 h (a)(b) Microstructure characteristic for the siliconized alloy : dense protruding bulges, with low specific surface area.
4.4. Al-10wt.%Si (after oxidation at 1273K for 100hrs) The cross-section of the oxidized sample which was siliconized by Al-10%Si alloy and the element area distribution SiTi Al Ti-Si Ti-Al
4.5. TiAl 合金循环氧化实验结果 1173 K------room tem. 1273 K------room tem. ( 100 cycles ) ( 100 cycles ) g/m 2 10.4~17.6 g/m ~-26.1 g/m 2 Al-10%Si 改性
4.4. Cross-section of the TiAl specimen after cyclic oxidation Siliconized by Al-10wt%Si alloy 1: Al 2 O 3 ; 2: (TiO 2 )+(Al 2 O 3 ) ; 3: (Al-Ti-Si)-O type oxide. 11 22 3
4.5. TiAl 合金循环氧化实验结果
(二) 液相渗铝、渗硅 对 Ti 3 Al 基合金的表面改性研究 第三届民用飞机制造技术及装备论坛, 深圳, 7, March 2011
Al-Si 对 Ti 3 Al 基合金的表面改性层组织 1013K/10min 1053K/15min
Oxidation kinetics of the isothermal oxidation at 1073 K for 95 hrs for the bare alloy and the modified specimens. (w 2 Kp t ) (a) Change of mass gain with oxidation time (b) (mass gain) 2 versus oxidation time (b)(a) 表面改性后 Ti 3 Al 基合金的 1073K 抗氧化性能
最外层生成致密的 Al 2 O 3 膜 TiSi 2 +O 2 →SiO 2 +TiO 2 +Ti 5 Si 4 Bare alloy Coated alloy 表面改性后 Ti 3 Al 基合金的 1073K 抗氧化性能
Ti 3 Al 基合金的恒温( 1173K )氧化动力学曲线 表面改性后 Ti 3 Al 基合金的 1173K 抗氧化性能
Ti 3 Al 基合金的氧化层界面形貌 ( 1013K/6min+983K/10min ) 经过两次渗硅处理的 Ti 3 Al 基合金表层在经 100 小时氧化后,在最外层生成了一薄 层 Al 2 O 3 氧化膜,阻止了内部涂层以及 Ti 3 Al 合金基体在 1173 K 的进一步氧化。 高温氧化在涂层与基体之间形成扩散反应区,从 Ti 3 Al 基体向外主要物相按 Ti 3 Al→ Ti 2 Al→TiAl→Ti-Si 的次序分布 。 表面改性后 Ti 3 Al 基合金的 1173K 抗氧化性能 最外层形成 准连续的 Al 2 O 3 膜 Ti 3 Al
选取 Al-Si 合金作为反应介质,采取 1013K/6min+983K/10min 的表面处理工艺, 对 Ti 3 Al 拉伸性能无不利影响。 抗拉强度基本保持不变,而延伸率从 未加涂层的 6.2% 提高到 9.3% 。 未加涂层前后 Ti 3 Al 基合金试样的拉伸性能对比
(三) 液相渗铝、渗硅 对 Ti60 合金的表面改性研究 第三届民用飞机制造技术及装备论坛, 深圳, 7, March 2011
Ti60 合金浸渍反应实验及表面改性提高抗氧化性机理 表面改性层: TiAl 3 +TiSi 2 Ti60 由 Al-10wt%Si 合金经改性后表面 的 X- 射线衍射图谱 (1013 K/20min)
未加涂层与施加涂层 Ti60 合金 1073 K/95 h 恒温氧化动力学曲线 Ti60 采用液相渗铝渗硅方法改性后, 1073 K/ 95 h 氧化后增重减小到 10.7 g/m 2 ,大约只有未加涂层试样的 1/4 。 Ti60 采用液相渗铝渗硅方法改性后, 1073 K 抛物线氧化速率常数 Kp 大约只有未加涂层试样的 1/40 。 1.115~1.191 g 2 /m 4 h g 2 /m 4 h Kp: g 2 /m 4 h Ti60 合金浸渍反应实验及表面改性提高抗氧化性机理
Bare alloy Coated alloy Ti60 合金浸渍反应实验及表面改性提高抗氧化性机理
Selected Publications : 1)Hua-Ping Xiong, Wei Mao, et al. Liquid-phase siliconizing by Al-Si alloys at the surface of a TiAl-based alloy and improvement in oxidation resistance, Acta Mater., 2004, Vol. 52 ( 9 ) : P ) Hua-Ping Xiong, Yong-Hui Xie, et al. Improvement in the oxidation resistance of the TiAl-based alloy by liquid-phase siliconizing, Scripta Mater., 2003, vol. 49: P ) Hua-Ping Xiong, Yong-Hui Xie, et al. Liquid-phase siliconizing and the improvement of the oxidation resistance of the Ti 3 Al-based alloy, J. Mater. Res., 2004, vol. 19 (4): P ) Hua-Ping Xiong, Wei Mao, et al. Formation of silicide coatings on the surface of a TiAl-based alloy and improvement in oxidation resistance, Mater. Sci. Eng. A, 2005, vol. 391 (1-2): P ) Hua-Ping Xiong, Wei Mao, et al. Liquid-phase aluminizing and siliconizing at the surface of a Ti60 alloy and improvement in oxidation resistance , Mater. Sci. Eng. A, 2006, Vol. 433, No. 1-2: P ) Hua-Ping Xiong, Qiang Shen. Design and microstructures of Ti/TiAl/Al system functionally graded material, J. Mater. Sci. Lett., 2000, vol. 19 (11): P ) 熊华平, 李晓红. 表面渗硅处理提高钛铝基合金高温抗氧化性. 金属学报, 2003, vol. 39 (1): P ) 熊华平, 毛唯, 马文利, 李建平, 李晓红. 液相渗 Si 提高 TiAl 基合金高温抗氧化性研究. 金属学报, 2003, vol. vol. 39 (7): P
Patent: 发明名称:一种对钛铝基合金进行表面处理的方法 –— 熊华平,李晓红,毛唯,程耀永,马文利,郭万林 专利号: 授予专利权日期: 2003 年 6 月 18 日
对上述论文,期刊主编 Richard Wagner 教授 ( 德国 ) 和评阅人评述: “The paper conveys sufficient new results to warrant publication in Acta Materialia……. Very interesting new approach to TiAl oxidation protection by liquid dipping method”. —— 意为: “ 这篇文章给出了足够新的研究结果,值得在 Acta Materialia 上发表。提出 通过液相浸渍反应的方法进行对 TiAl 的氧化保护,是非常有趣的新方法 ” 。 国际上对本项目的相关评述 Hua-Ping Xiong, Wei Mao, et al. Liquid-phase siliconizing by Al-Si alloys at the surface of a TiAl-based alloy and improvement in oxidation resistance, Acta Mater., 2004, Vol. 52 ( 9 ) : P 发表论文:
引文 Intermetallics, 2009 在 “1. Introduction” 部分论述到: “In China, immersing the TiAl alloy samples in liquid aluminium of eutectic composition has been employed. The layer was made up both by TiAl system phases and titanium silicide grains. The ternary Ti 7 Al 5 Si 12 phase has been detected as well [11]”. —— 意为: “ 在中国,已经应用了将 TiAl 浸入具有共晶成分的铝合金的表面改性 方法,改性层由 TiAl 系统物相和钛硅化合物组成。并且,三元化合物 Ti 7 Al 5 Si 12 相已经被探测到。 ” 国际上对本项目的相关评述 Goral M, Swadzba L, Moskal G, et al. Si-modified aluminide coatings deposited on Ti46Al7Nb alloy by slurry method, INTERMETALLICS, 2009, Vol. 17, P (波兰、日本) Hua-Ping Xiong, Wei Mao, et al. Liquid-phase siliconizing by Al-Si alloys at the surface of a TiAl-based alloy and improvement in oxidation resistance, Acta Mater., 2004, Vol. 52 ( 9 ) : P 发表论文:
引文 Mater. Sci. Eng. A 2006 采用 Al Si 粉末对 TC4 钛合金表面熔覆涂层 研究中引用到我们的论文: “However, more complicated reactions may occur during the fusing process due to the fact that the element Al in the Al-Si alloy also participated in the reaction. Consequently, besides the Ti-Si binary compound, the Ti-Al-Si (or Al-Si-Ti) ternary compounds, as the reaction product, have also formed in the modified layer[14].” —— 意为: “ 由于 Al-Si 合金中 Al 也参与了化学反应,在 Al Si 熔化过程会发生更 为复杂的反应,结果在表面改性层里,不仅生成了 Ti-Si 二元化合物,而且还出 现了 Ti-Al-Si ( 或 Al-Si-Ti) 反应产物 [14] 。 ” 国际上对本项目的相关评述 Hua-Ping Xiong, Wei Mao, et al. Liquid-phase siliconizing by Al-Si alloys at the surface of a TiAl-based alloy and improvement in oxidation resistance, Acta Mater., 2004, Vol. 52 ( 9 ) : P 发表论文: Zhou W, Zhao YG, Li W, et al. Al-Si coating fused by Al plus Si powders formed on Ti-6Al-4V alloy and its oxidation resistance, MATER. SCI. ENG. A, 2006, 430 (1-2), P
引文 Mater Sci Eng A 2007 在研究铝基复合材料时借鉴了 我们的论文中有关 Al-Si-Ti 三元化合物形成原理,通过浸渗方法 原位生成了 AlTiSi 三元化合物作为增强相。 国际上对本项目的相关评述 Hua-Ping Xiong, Wei Mao, et al. Liquid-phase siliconizing by Al-Si alloys at the surface of a TiAl-based alloy and improvement in oxidation resistance, Acta Mater., 2004, Vol. 52 ( 9 ) : P 发表论文: Qin QD, Zhao YG, Liu C, et al. Development of aluminium composites with in situ formed AlTiSi reinforcements through infiltration, MATER SCI ENG A, 2007, Vol. 460, P
引文 INTERMETALLICS 2006 借鉴我们的实验结果, 开展了对钛的保护涂层 研究,并且评价液相合金化表面改性方法成本不高、方法简单且适于小型结构 件的表面保护,其原文论述是: “In our research we have focused on two methods of surface protection of Ti: ……and liquid phase alloying [1, 2]. Both methods are inexpensive, simple and suitable for the surface protection of small structural components”. 国际上对本项目的相关评述 Hua-Ping Xiong, Yong-Hui Xie, et al. Improvement in the oxidation resistance of the TiAl-based alloy by liquid-phase siliconizing, Scripta Mater., 2003, vol. 49: P 发表论文: Vojtech D, Kubatik T, Pavlickova M, et al. Intermetallic protective coatings on titanium, INTERMETALLICS, 2006, 14 (10-11), P
引文 J. Alloy Compounds 2008 引用了我们关于 Ti60 合金液相渗硅表面 改性方法,列举了我们关于 Ti60 合金表面硅化物涂层经高温氧化后的表层 氧化膜厚度,跟他们在钛表面 Ti 5 Si 3 涂层氧化实验结果进行了比较研究; 引文 J. Coat. Technol. Res 在研究钛合金 IMI834 合金表面铝化物 涂层时引用了我们关于 Ti60 合金表面改性的方法; 引文 Surf. Coat. Technol 研究不锈钢表面涂层时引用了我们使用 Al-Si 熔体进行 Ti60 表面改性的方法; 上述对钛基高温合金表面改性新方法,对 Nb 合金表面改性研究显示出了 借鉴和指导作用,见引文 Key Eng. Mater 国际上对本项目的相关评述 Hua-Ping Xiong, Wei Mao, et al. Liquid-phase aluminizing and siliconizing at the surface of a Ti60 alloy and improvement in oxidation resistance , Mater. Sci. Eng. A, 2006, Vol. 433, No. 1-2: P 发表论文:
衷心感谢航空基金委的资助!衷心感谢航空学会、机械工程学会的鼓励和支持! 欢迎大家批评、指正!