第 11 章 假設檢定的介紹.

Slides:



Advertisements
Similar presentations
©2009 陳欣得 統計學 —e1 微積分基本概念 1 第 e 章 微積分基本概念 e.1 基本函數的性質 02 e.2 微分基本公式 08 e.3 積分基本公式 18 e.4 多重微分與多重積分 25 e.5 微積分在統計上的應用 32.
Advertisements

變數與函數 大綱 : 對應關係 函數 函數值 顧震宇 台灣數位學習科技股份有限公司. 對應關係 蛋餅飯糰土司漢堡咖啡奶茶 25 元 30 元 25 元 35 元 25 元 20 元 顧震宇 老師 台灣數位學習科技股份有限公司 變數與函數 下表是早餐店價格表的一部分: 蛋餅 飯糰 土司 漢堡 咖啡 奶茶.
單元九:單因子變異數分析.
第 9 章 估計的介紹.
應用統計理論 編著:劉正夫教授 Reference:1) Wonnacott and Wonnacott. Introductory
行銷研究 單元二 行銷研究的程序.
假設檢定之基本概念 單一母體平均數之假設檢定 假設檢定與信賴區間之相關性 兩母體平均數之假設檢定  
第 10 章 單組樣本的假設檢定.
第 9 章 假設檢定 Part A ( ).
第 9 章 假設檢定 Part A ( ).
第 10 章 假設檢定的介紹與單一母體的介紹.
第 11 章 比較兩個母體的推論.
判斷步驟 Step 1 :判斷是否為常態分配 Step 2 :如果是常態分配,用「假設檢定」,如果不是請看 Step 3
17 類別資料的分析  學習目的.
第六章 假设检验的基本概念.
第四章 數列與級數 4-1 等差數列與級數 4-2 等比數列與級數 4-3 無窮等比級數 下一頁 總目錄.
假設檢定.
商用統計學 Chapter 8 假設檢定.
第六章 平均數比較 6-1 平均數比較(各種 T Test 的應用) 6-2 Means 平均數分析 6-3 單一樣本 T 檢定
第 7 章 抽樣與抽樣分配 Part B ( ).
One-Sample Tests of Hypothesis
Chapter 17 投資決策經濟分析.
Keller: Stats for Mgmt & Econ, 7th Ed 卡方檢定
4B冊 認識公倍數和最小公倍數 公倍數和最小公倍數的關係.
SQL Stored Procedure SQL 預存程序.
11.1單一母體變異數的推論 前幾章中,我們以樣本變異數
第十四單元 弧長與旋轉體的表面積.
Inferences Based on a Single Sample: Tests of Hypothesis Chapter 9
Methods 靜宜大學資工系 蔡奇偉副教授 ©2011.
第一章.
主講人 陳陸輝 特聘研究員兼主任 政治大學 選舉研究中心
Java 程式設計 講師:FrankLin.
七. 假說檢定Ⅰ (Hypothesis Testing Ⅰ) (Chapter 7)
第 9 章 假設檢定 Part B ( ).
指導老師: 蘇明俊 老師 組長:潘翠娥 組員:張惠雅 葉麗華
第二次電腦實習課 說明者:吳東陽 2003/10/07.
統計學 指導老師: 郭燿禎 Date: 2/14/12.
第十章補充 允收抽樣.
第 7 章 推論方法.
估計與假設檢定.
網頁資料知多少? 事 實 ? 謠言?.
有關於股票報酬及匯率變化對台灣醫療產業市場收益的分析
CH05. 選擇敘述.
第七章 假設檢定.
微積分網路教學課程 應用統計學系 周 章.
挑戰C++程式語言 ──第8章 進一步談字元與字串
第五章 估計與信賴區間 5.1 估計概論 估計量的分配 信賴度、信賴區間與最大容忍誤差16
平均數檢定與變異數分析 莊文忠 副教授 世新大學行政管理學系 SPSS統計應用分析研習(莊文忠副教授) 2019/4/27.
產品設計與流程選擇-服務業 等候線補充資料 20 Oct 2005 作業管理 第六章(等候線補充資料)
電子期刊使用統計 CONCERT 2002 meeting November 13-14, 2002 羅宙康 Springer-Verlag
Introduction to Basic Statistics
流程控制:Switch-Case 94學年度第一學期‧資訊教育 東海大學物理系.
Parameter Estimation and Statistical Inference
MiRanda Java Interface v1.0的使用方法
楊志強 博士 國立台北教育大學系 教育統計學 楊志強 博士 國立台北教育大學系
Chapter 8 假設檢定.
第一章 貨幣的時間價值.
R教學 t檢定R指令與範例 羅琪老師.
第 11 章 假設檢定的介紹.
參考書籍:林惠玲與陳正倉(2002),《應用統計學第二版》。台北:雙葉書廊有限公司。
第 零 章 假 設 檢 定.
第十三章 彩色影像處理.
政治大學財政所與東亞所選修--應用計量分析--中國財政研究 黃智聰
假說檢定程序 3.1 定義 3.2 假說檢定程序 3.3 檢定的種類與方法 3.4 統計檢定精神 個案:假說建立
單元三:敘述統計 內容: * 統計量的計算 * 直方圖的繪製.
17.1 相關係數 判定係數:迴歸平方和除以總平方和 相關係數 判定係數:迴歸平方和除以總平方和.
第三十單元 極大與極小.
Presentation transcript:

第 11 章 假設檢定的介紹

統計推論 假設檢定是統計推論的第二個類型。它也有很廣泛 的應用。 為了解其概念,我們將從非統計假設檢定開始。 第11章 假設檢定的介紹 第378頁

假設檢定的非統計應用 刑事審判是假設檢定的非統計的例子。 審判中陪審團必須在兩個假設中做決定。虛無假設(null hypothesis)為 對立(alternative) 或研究假設(research hypothesis)為 H1: 被告是有罪的 陪審團並不知道哪一個假設是正確的。他們必須要依據原告 和被告兩方提出的證據做決策。 第11章 假設檢定的介紹 第379頁

假設檢定的非統計應用 在統計的術語宣判被告有罪 等同於拒絕虛無假設且支持對立假設 (rejecting the null hypothesis in favor of the alternative) 也就是,陪審團認為有足夠的證據做出被告有罪的 結論(有足夠的證據支持對立假設)。 第11章 假設檢定的介紹 第379頁

假設檢定的非統計應用 宣判被告無罪如同說 不拒絕虛無假設且不支持對立假設 (not rejecting the null hypothesis in favor of thealternative) 注意陪審團並不是說被告是無罪的,只能說沒有足 夠證據支持對立假設。這是為什麼我們從不說我們 支持虛無假設。 第11章 假設檢定的介紹 第379頁

假設檢定的非統計應用 有兩種可能的錯誤。 型 I 錯誤(Type I error) 發生於當我們拒絕了一個真 個無罪的人被陪審團錯誤地宣判有罪。 型 II 錯誤(Type II error) 被定義成不拒絕一個錯誤 的虛無假設。型 II 錯誤的發生是當一個有罪的被告 被宣判無罪釋放。 第11章 假設檢定的介紹 第379頁

假設檢定的非統計應用 犯型 I 錯誤的機率被表示成  ( 希臘字母alpha) , 它也被稱為顯著水準(significance level)。犯型 II 錯 誤的機率被表示成  ( 希臘字母beta)。 兩種錯誤的機率 a 和 b 是反向相關的,意思是試圖 降低其中一個將會造成另外一個的增加。 第11章 假設檢定的介紹 第379頁

假設檢定的非統計應用 在我們的刑事審判制度,型 I 錯誤被視為是比較嚴 重的。我們試著避免宣判無罪的人有罪。我們更樂 意宣告有罪的人無罪。 辯方無需證明任何事情),且陪審團只有在「證據超過合理的懷疑」時才得以宣判被告有罪。 第11章 假設檢定的介紹 第379頁

假設檢定的非統計應用 假設檢定的重要觀念如下所述: 有兩個假設,為虛無假設與對立假設。 檢定的程序以假設虛無假設為真開始。 過程的目的是要決定是否有足夠的證據去推論對立假設是真的。 有兩種可能的決策: 結論認為有足夠的證據去支持對立假設。 結論認為無足夠的證據去支持對立假設。 第11章 假設檢定的介紹 第380頁

假設檢定的非統計應用 任何檢定皆有兩種可能的錯誤。 型 I 錯誤:拒絕一個真的虛無假設 型 II 錯誤:無法拒絕一個錯誤的虛無假設 P ( 型 I 錯誤) =  P ( 型 II 錯誤) =  第11章 假設檢定的介紹 第380頁

假設檢定的概念(1) 有兩個假設。一個被稱為虛無假設,另一個被稱為 對立或研究假設。通用的符號表示法: H0: — 「虛無假設」 虛無假設(H0)總是說明參數是等於對立假設中指定的值(H1)。 發音為 H “nought” 第11章 假設檢定的介紹 第380頁

假設檢定的概念 再次回想範例10.1 (估計電腦前置期間的平均需求量),我們的管理者不想估計平均需求量,取而代之的是想要知道平均數是否不同於350。我們可以重新表述需求為虛無假設: H0: µ = 350 所以我們的研究假設為: H1: µ ≠ 350 這是我們有興趣去確認的部分... 第11章 假設檢定的介紹 第380-381頁

假設檢定的概念(2) 檢定的程序以假設虛無假設為真開始。 因此,在我們有更近一步的統計證據之前,我們將假設: H0:  = 350 (假設為真) 第11章 假設檢定的介紹 第380.381頁

假設檢定的概念(3) 過程的目的是要決定是否有足夠的證據去推論對立 假設是真的。 也就是說,是否有足夠的統計資料,以確定這一假 設是正確的? H1:µ ≠ 350 這是我們有興趣去確認的部分... 第11章 假設檢定的介紹 第380頁

假設檢定的概念(4) 有兩種可能的決策:  結論認為有足夠的證據去支持對立假設。 (換句話說:拒絕虛無假設並且支持對立假設的)  結論認為無足夠的證據去支持對立假設。 (換句話說:不拒絕虛無假設去支持對立) 注意:我們不說我們接受虛無假設。 第11章 假設檢定的介紹 第380頁

假設檢定的概念 完成檢定與假設的敘述之後,下一個步驟是自母體中隨機抽取樣本並計算檢定統計量(test statistic)(此範例為樣本平均數)。 假如檢定統計量的值與虛無假設所述不一致,我們拒絕虛無假設並且推論對立假設是真的。 第11章 假設檢定的介紹 第382頁

假設檢定的概念 例如,若我們試圖決定平均數是否大於350,一個很大的x 值( 譬如,600) 將提供足夠的證據。 第11章 假設檢定的介紹 第382頁

假設檢定的概念(5) 任何檢定皆有兩種可能的錯誤。 型 I 錯誤的發生是當我們拒絕一個真的虛無假設。 型 II 錯誤的發生是當我們無法拒絕一個錯誤的虛無假設。 犯型 I 與型 II 錯誤的機率是: P ( 型 I 錯誤) =  P ( 型 II 錯誤) =  α 被稱為顯著水準(significance level)。 第11章 假設檢定的介紹 第380頁

錯誤的型態 型 I 錯誤(Type I error) 發生於當我們拒絕了一個真實的虛無假設。 型 II 錯誤(Type II error) 發生於當我們不拒絕一個錯誤的虛無假設(例,沒有拒絕 H0,當它是錯誤的)。 第11章 假設檢定的介紹 第379-380頁 表4.1

範例11.1 某百貨公司的經理想要對公司的信用卡顧客發展一套新的收費系統。 在全面的財務分析之後,她判定只有在平均每月帳上金額高於$170 時,新系統才會符合成本效益。隨機抽出400 個每月帳戶為樣本,帳戶金額的樣本平均數為$178。 該經理知道帳戶金額近似於常態分配,標準差為$65。該經理可否從上述資料做出新系統將會符合成本效益的結論? 第11章 假設檢定的介紹 第383頁

範例11.1 這個範例處理百貨公司信用卡帳戶的母體。為了下結論說新系統將會符合成本效益,經理必須證明所有顧客的平均帳戶金額是大於$170。 辨認方法 範例11.1 這個範例處理百貨公司信用卡帳戶的母體。為了下結論說新系統將會符合成本效益,經理必須證明所有顧客的平均帳戶金額是大於$170。 我們設定對立假設來表達這個狀況: H1: µ > 170 (這是我們要確定的) 虛無假設可以被表達成: H0: µ = 170 (對我們感興趣的參數指定一個單一的數值) 第11章 假設檢定的介紹 第383-384頁

範例11.1 所以可寫成: H0: µ = 170 (假設此項為真) H1: µ > 170 已知: n = 400 = 178 辨認方法 範例11.1 所以可寫成: H0: µ = 170 (假設此項為真) H1: µ > 170 已知: n = 400 = 178 σ = 65 接下來該如何推論? 第11章 假設檢定的介紹 第頁

範例11.1 為了檢定我們的假設,我們可以使用兩種不同方法: 計算 範例11.1 為了檢定我們的假設,我們可以使用兩種不同方法: 第一個被稱為拒絕域法(rejection region method) ,當手動計算時,通常使用此方法。 第二種是 p- 值法(p-value approach),一般而言它僅能連結電腦和統計軟體來使用。 我們將依次介紹兩種方法。 第11章 假設檢定的介紹 第384頁

範例11.1 拒絕域 當樣本平均數的值相對於170 是很大時,拒絕虛無假設而支持對立假設似乎很合理。 α = P(型 I 錯誤) 計算 第11章 假設檢定的介紹 第384-385頁 圖11.1

範例11.1 計算左邊算式的 ,並與 µ = 170做比較。 計算 我們需要一個顯著水準(α) 來計算此項 計算左邊算式的 ,並與 µ = 170做比較。 我們需要一個顯著水準(α) 來計算此項 第11章 假設檢定的介紹 第385頁

範例11.1 計算 假設該經理選擇為 5%,接下來可得Z = Z.05 = 1.645 。我們現在能夠計算 的值: 由於樣本平均數(178)大於我們計算出的值(175.34),我們拒絕虛無假設並支持對立假設,例如 µ > 170 也就是裝設新系統符合成本效益。 第11章 假設檢定的介紹 第386頁

範例11.1 X 的抽樣分配 H0: = 170 H1: > 170 =175.35 =178 拒絕 H0並且支持 H1為真 第11章 假設檢定的介紹 第386.387頁 圖11.2

標準化檢定統計量 一個比較簡單的方法是使用標準化檢定統計量(standardized test statistic): 並且將其結果與Z相比較: (拒絕域: z > Z ) 因為z = 2.46 大於1.645(z.05),所以拒絕 H0 並支持 H1。 第11章 假設檢定的介紹 第386-387頁

範例11.1 Z 的抽樣分配 H0: = 170 H1: > 170 Z.05=1.645 z = 2.46 拒絕H0並且支持H1為真 第11章 假設檢定的介紹 第387頁 圖11.3

p- 值 一個檢定的p- 值(p-value of a test) 是在給定虛無假設為真的條件下,觀測到一個檢定統計量至少像計算所得數值一樣極端的機率。 在範例11.1 中,觀測到一個樣本平均數至少像已經觀察過的樣本一樣極端的機率(如:178),給定的虛無假設(H0: µ = 170)是否為真? p-值 第11章 假設檢定的介紹 第388頁

p- 值 p- 值 = P(Z > 2.46) p- 值 =.0069 z =2.46 第11章 假設檢定的介紹 第389頁 圖11.4

描述 p- 值 p- 值愈小,愈多測量證據存在以支持對立假設: 假如 p- 值小於.01,有壓倒性的(overwhelming) 證 據支持對立假設是對的。 假如 p- 值介於.01 和.05 之間,有強烈的(strong) 證據支持對立假設是對的。 假如 p- 值介於.05 和.10 之間,有微弱的(weak) 證 假如 p- 值超過.10 時,沒有證據支持推論對立假 設是對的。 因為 p-值為 .0069,所以有壓倒性的證據支持H1:  > 170。 第11章 假設檢定的介紹 第391頁

描述 p- 值 p =.0069 第11章 假設檢定的介紹 第391頁 圖11.6

描述 p- 值 比較 p- 值及顯著水準的選擇值: 假如 p- 值小於,我們判斷 p- 值夠小去拒絕虛無假設。 當p- 值 = .0069 < = .05, 我們拒絕 H0 且支持H1。 第11章 假設檢定的介紹 第391頁

範例11.1 鍵入或匯入資料到某欄。( 開啟Xm11-01) 計算 範例11.1 鍵入或匯入資料到某欄。( 開啟Xm11-01) 點選Add-Ins、 Data Analysis Plus,與Z-Test: Mean 第11章 假設檢定的介紹 第392頁

計算 範例11.1 第11章 假設檢定的介紹 第392頁

詮釋一個檢定的結果 假如我們拒絕虛無假設,我們下結論說有足夠的統計證據去推論對立假設是真的。 假如我們不拒絕虛無假設,我們下結論說沒有足夠的統計證據去推論對立假設是真的。 切記:對立假設是結論的焦點。它呈現了我們想要調查與探討的內容。 第11章 假設檢定的介紹 第394頁

開章範例 SSA 信封計畫 聯邦快遞(FedEx) 寄發票給顧客要求30天之內付費。 帳單上會列出付款地址,且期望顧客使用他們自己的信封寄回他們的付款。 目前,付清帳單所需時間的平均數與標準差分別是24 天與6 天。 財務長(CFO) 相信附上一個回郵 (stamped selfaddressed, SSA)信封會縮短付款時間。 第11章 假設檢定的介紹 第378頁

開章範例 SSA 信封計畫 她計算減短2 天的付款時間以改善現金流量,將能支付信封與郵票的成本。 若更進一步地減短付費時間,將會產生利潤。 為了測試她的想法,她隨機選取220 位顧客且隨著發票附上一個回郵信封寄出。 收到付款所需的天數被記錄下來。這位財務長是否能夠下結論說這項計畫是有利潤的? 第11章 假設檢定的介紹 第378頁

SSA 信封計畫 這項研究的目的是對平均付款時間推導結論。因此,要被檢定的參數是母體平均數 。 辨識方法 SSA 信封計畫 這項研究的目的是對平均付款時間推導結論。因此,要被檢定的參數是母體平均數 。 我們想知道是否存在足夠的統計證據以顯示母體平均數是少於22 天。因此,對立假設為 H1: μ < 22 虛無假設為 H0: μ = 22 第11章 假設檢定的介紹 第395頁

SSA 信封計畫 檢定統計量為 只有當樣本平均數與其導出的檢定統計量的數值夠小的時候,我們會拒絕虛無假設且支持對立假設。 辨識方法 SSA 信封計畫 檢定統計量為 只有當樣本平均數與其導出的檢定統計量的數值夠小的時候,我們會拒絕虛無假設且支持對立假設。 結果,我們設定的拒絕域位置會在抽樣分配的左尾。 我們設定10% 的顯著水準。 第11章 假設檢定的介紹 第395頁

SSA 信封計畫 拒絕域為: 由Xm11-00資料,我們計算出 和 p- 值 = P(Z < −.91) = .5 − .3186 = .1814 第11章 假設檢定的介紹 第395-396頁

SSA 信封計畫 點選Add-Ins、 Data Analysis Plus, 與 Z-Estimate: Mean 計算 第11章 假設檢定的介紹

計算 SSA 信封計畫 第11章 假設檢定的介紹 第396頁

SSA 信封計畫 結論:沒有充分的證據去推論平均付款時間小於22 天。 沒有足夠的證據去推論這項計畫將會是有利益的。 詮釋 第11章 假設檢定的介紹 第396頁

單尾與雙尾檢定 在範例11.1 中,執行的統計檢定被稱為單尾檢定(one-tail test),因為拒絕域只位於抽樣分配的單尾。 更正確地說,範例11.1 是右尾檢定的範例之一。 第11章 假設檢定的介紹 第397頁

雙尾檢定 雙尾檢定被用於當我們想要檢定參數不等於某些值 的研究假設。 第11章 假設檢定的介紹

範例11.2 近年來,數家公司已成立並投入與AT&T 長途電話的競爭。 AT&T 辯稱,平均而言,AT&T 對顧客的收費與其他公司並沒有差別。 假設一個替AT&T 工作的統計實作者認定該公司的居家客戶每月長途電話帳單的平均數與標準差分別是 $17.09 和 $3.87。 第11章 假設檢定的介紹 第397頁

範例11.2 他接著隨機抽取了100 位顧客為樣本,並使用一個首要競爭者的費率重新計算這些顧客上個月的帳單。 假設這個母體的標準差與AT&T 的相同,我們能否下結論說在5% 的顯著水準下,平均AT&T 帳單與首要競爭者之間存在著差異? 第11章 假設檢定的介紹 第397頁

範例11.2 被檢定的參數是AT&T的客戶帳單之母體平均數是基於首要競爭者的費率。 辨識方法 範例11.2 被檢定的參數是AT&T的客戶帳單之母體平均數是基於首要競爭者的費率。 在這個問題中,我們想要知道平均每月長途電話帳單是否不同於$17.09。所以,對立假設為: H1: µ ≠ 17.09 虛無假設必然為: H0: µ = 17.09 第11章 假設檢定的介紹 第397-398頁

範例11.2 辨識方法 拒絕域被設定,所以當檢定統計量很大或很小的時候,我們能夠拒絕虛無假設 也就是,我們必須設定一個雙尾拒絕域(two-tail rejection region)。因為在拒絕域的總面積必須是,我們將這個機率除以 2。 統計量很“小” 統計量很“大” 第11章 假設檢定的介紹 第398頁

範例11.2 在5%的顯著水準之下(α = .05),可知 α/2 = .025。因此,z.025 = 1.96 的拒絕域為 辨識方法 範例11.2 在5%的顯著水準之下(α = .05),可知 α/2 = .025。因此,z.025 = 1.96 的拒絕域為 z < –1.96 -或- z > 1.96 z -z.025 +z.025 第11章 假設檢定的介紹 第398頁

範例11.2 計算 從資料(Xm11-02),我們可計算出 = 17.55 檢定統計量的值是: 我們發現: 因為 z = 1.19 既不大於1.96 也不小於 − 1.96,我們不能拒絕虛無假設且支持H1,即「沒有充足的證據去推論AT&T 的帳單與競爭者的有差異」。 第11章 假設檢定的介紹 第398-399頁

範例11.2 雙尾檢定的 p- 值 一般而言,雙尾檢定的 p- 值被計算如下 p- 值 = 2P(Z > |z|) 在範例11.2中,我們可得知 p- 值 = P(Z < 1.19) + P(Z > 1.19) = .1170 + .1170 = .2340 第11章 假設檢定的介紹 第398-399頁

計算 範例11.2 第11章 假設檢定的介紹

計算 範例11.2 第11章 假設檢定的介紹 第399頁

雙尾檢定與單尾檢定總整理 單尾檢定 (左尾) 雙尾檢定 (右尾) 第11章 假設檢定的介紹

發展對統計觀念的了解 如同信賴區間估計量,假設檢定是依據樣本統計量的抽樣分配。 假設檢定的結果是一個關於樣本統計量的機率陳述。 我們假設母體平均數是虛無假設所設定的值。 第11章 假設檢定的介紹 第401頁

發展對統計觀念的了解 我們接著將計算檢定統計量,和測量當虛無假設為真時觀察到一個如此大(或小)數值的可能性。 假如這個機率很小,我們下結論說「虛無假設為真」的假設不能被證實且我們拒絕它。 第11章 假設檢定的介紹 第401頁

發展對統計觀念的了解 當我們( 或電腦) 計算檢定統計量的值 我們也測量樣本統計量和參數設定值之間的差異。 測量的差異為標準誤。 第11章 假設檢定的介紹 第401頁

發展對統計觀念的了解 在範例11.2 中,我們發現檢定統計量的值是z = 1.19。意指樣本平均數比  的參數設定值大1.19 個標準誤。 標準常態機率表告訴我們這個值並不是不可能。因此,我們不拒絕虛無假設。 測量樣本統計量和參數設定值之間相差幾個標準誤的觀念將在本書中繼續使用。 第11章 假設檢定的介紹 第401頁

計算犯型 II 錯誤的機率 了解型 I 與型 II 錯誤之間的關係非常重要。也就是,如何計算犯型 II 錯誤的機率以及如何詮釋其結果。 回顧範例11.1 H0: µ = 170 H1: µ > 170 由於我們的樣本平均數(178)比 測量值(175.34)大,在5%的顯著水準下,我們拒絕 H0 且支持 H1 。 第11章 假設檢定的介紹 第405頁

計算犯型 II 錯誤的機率 一個型 II 錯誤發生於當一個錯誤的虛無假設不能被拒絕。 在範例 11 . 1 中,如果 不是小於 175.34(我們的臨界值),我們將不會拒絕虛無假設。如果我們不拒絕這項虛無假設,我們將不會裝置新的收費系統 。 因此,其發生的機率是型 II 錯誤的機率,它被定義為 β = P( x < 175.34 給定虛無假設為錯) 第11章 假設檢定的介紹 第405頁

範例 11.1(回顧) β = P( < 175.34 給定虛無假設為錯) 虛無假設為錯的情況只告訴我們平均數是不等於 170 。如果我們要計算 β,我們必須為  指定一個數值。假設當平均每月帳上金額是$180 時,則新收費系統所節省的錢變得十分具吸引力,這位經理將後悔沒有裝置新系統。 β = P( < 175.34, 給定 µ = 180), 因此… 第11章 假設檢定的介紹 第405頁

範例 11.1 (回顧) 原先的假說 新的假設 β = P(X < 175.34,給定 µ = 180) 第11章 假設檢定的介紹 第405.406頁 圖11.9

 改變對  的影響 降低顯著水準 ,增加 的值,並且反之亦然。在範例11.1.中使用1%的顯著水準取代5%。 步驟 1: 拒絕域: 降低顯著水準 ,增加 的值,並且反之亦然。在範例11.1.中使用1%的顯著水準取代5%。 步驟 1: 拒絕域: 第11章 假設檢定的介紹 第406頁

 改變對  的影響 步驟2:型 II 錯誤的機率是 第11章 假設檢定的介紹 第406頁

 改變對  的影響 顯著水準 減少,增加 的值,並且反之亦然。 再次細看此圖。我們向右移動拒絕域的臨界值(減少 ) 表示在第二個圖的曲線下方有一個更大的面積 … (反之亦然) 。 第11章 假設檢定的介紹 第406.407頁 圖11.9 & 圖11.10

判斷檢定 一個統計的假設檢定有效地被顯著水準()與樣本大小(n)所定義,二者皆由統計實作人員所選定。 如果我們相信型 II 錯誤的成本比較高,而此機率太大,我們有兩種方法降低這個機率 增加 α 的值 和/或 增加樣本大小 n 第11章 假設檢定的介紹 第407頁

判斷檢定 例如,在範例11.1 中,假設我們將樣本大小 n 由400增加到1000 。 步驟 1: 拒絕域 第11章 假設檢定的介紹 第407-408頁

判斷檢定 步驟2:型 II 錯誤的機率是 第11章 假設檢定的介紹 第408頁

比較 在 n = 400 與 n = 1,000 藉著增加樣本大小,我們降低了型 II 錯誤的機率。 n=400 175.35 173.38 第11章 假設檢定的介紹 第406.408頁 圖11.9 & 圖11.11

發展對統計概念的了解 以 n = 400 與 n = 1,000 計算型 II 錯誤的機率說明了一個極為重要的概念。 藉著增加樣本大小,我們降低了型 II 錯誤的機率。藉著降低型 II 錯誤的機率,我們使得這類的錯誤較少發生。 因此,就長期而言,較大的樣本容許我們製訂較佳的決策。此一發現正中應用統計分析的核心,並且印證了本書的第一句話,「統計學是從資料取得資訊的一種方法」。 第11章 假設檢定的介紹 第409頁

發展對統計概念的了解 貫穿本書,我們介紹各種在會計、財務、行銷、作業管理、人力資源與經濟學上的統計應用方法。 在所有這類的應用中,統計實作人員必須做決策,它涉及到如何將資料轉換為資訊。越多的資訊,就會有越好的決策。 缺乏資訊,則決策必須基於猜測、直覺與運氣。一位有名的統計學家W. Edwards Deming曾經說過:「缺乏資料,你只是另一個具有意見的人。」 第11章 假設檢定的介紹 第409頁

檢定的檢定力 另一種表達檢定執行好壞的方法是報告它的檢定力(power):當虛無假設為假時,檢定引導我們拒絕虛無假設的機率。因此,一個檢定的檢定力是1 - 。 在一個特定的狀況下,當有一個以上的檢定可以被執行時,我們自然會偏好使用一個正確頻率比較高的檢定。 如果( 給定相同的對立假設、樣本大小與顯著水準) 一個檢定的檢定力高於第二個檢定,則說第一個檢定比第二個更具效率。 第11章 假設檢定的介紹 第409頁

後續學習 統計實作人員經常採用的統計方法 定義 計算 詮釋 測量最困難的部分(在現實生活中或是期末考時)是辨認正確的方法。 第11章 假設檢定的介紹 第414-415頁

後續學習 許多因素可用來辨認正確的方法,但是其中兩個因素特別的重要: 1. 資料的類型 區間、順序和名目 2. 問題的目的 第11章 假設檢定的介紹 第415頁

問題的目的 描述一個母體 比較兩個母體 比較兩個或更多母體 分析兩個變數的關係 分析兩個或更多變數的關係 第11章 假設檢定的介紹 第415-416頁

表11.3 統計推論的導覽:介紹每一種方法的章節 第11章 假設檢定的介紹 第表11.3頁

公式推導 各種因素決定我們感興趣的參數(例:母體平均數 )。 每一個參數有其「最佳」估計量(統計)(如樣本平均數 。 統計學有抽樣分配 每一個參數有其「最佳」估計量(統計)(如樣本平均數 。 統計學有抽樣分配 這個公式表示抽樣分配通常是檢定統計的公式。 使用一點點的代數,我們就能從抽樣分配導出信賴區間估計量。 第11章 假設檢定的介紹 第417頁