物數(二) 第十章 傅立葉分析 (Fourier Analysis)

Slides:



Advertisements
Similar presentations
1 Lecture 5 Properties of LTI Systems The Solution of LCCDE.
Advertisements

义务教育课程标准实验教科书人教版七年级上册第 24 课 《散文诗两首》之 —— 荷叶 母亲 宁夏彭阳县王洼中学 庞鸿渊 冰 心冰 心.
Differentiation 微分 之二 以公式法求函數的微分. Type 函數形式 Function f (x) Derivative d f (x) /d x c=constant 常數 c0 Power of x xaxa a x a-1 Trigonometric 三角函數 sin x cos.
第三章 導函數 ‧ 函數的極限與連續 函數的極限與連續 ‧ 導數及其基本性質 導數及其基本性質 ‧ 微分公式 微分公式 ‧ 高階導函數 高階導函數 總目錄.
1 CH 7 Inverse Functions 反函數. 2 學習內容 7.1 Inverse Functions7.1 Inverse Functions 7.2* The Natural Logarithmic Function7.2* The Natural Logarithmic Function.
Chap 3 微分的應用. 第三章 3.1 區間上的極值 3.2 Rolle 定理和均值定理 3.3 函數的遞增遞減以及一階導數的判定 3.4 凹面性和二階導數判定 3.5 無限遠處的極限 3.6 曲線繪圖概要 3.7 最佳化的問題 3.8 牛頓法 3.9 微分.
Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung Chapter 4 Series solutions of Differential Equations 當微分方程式具有可變的係數.
附加數學 / 純粹數學 Common Limits 常見極限. 附加數學 / 純粹數學 Derivatives of Functions 函數的導數.
663 Chapter 14 Integral Transform Method Integral transform 可以表示成如下的積分式的 transform  kernel Laplace transform is one of the integral transform 本章討論的 integral.
楊學成 老師 Chapter 1 First-order Differential Equation.
工職數學 第四冊 第一章 導 數 1 - 1 函數的極限與連續 1 - 2 導數及其基本性質 1 - 3 微分公式 1 - 4 高階導函數.
不定積分 不定積分的概念 不定積分的定義 16 不定積分的概念 16.1 不定積分的概念 以下是一些常用的積分公式。
大綱 1. 三角函數的導函數. 2. 反三角函數的導函數. 3. 對數函數的導函數. 4. 指數函數的導函數.
S.1 封面 S.2 目錄 S.3 個案一 S.4 個案二 S.5 感想 S.6 社會的行動 S.7 政府的行動 S.8 活到老 學到老 S.9 總結 S.10 老?!
2-1 極限的概念 2-2 無窮等比級數 2-3 多項式函數的導數導函數 2-4 微分公式 2-5 微分的應用 2-6 積分的概念與反導函數 信樺文化.
1.3 二项式定理. [ 题后感悟 ] 方法二较为简单,在展开二项式之前根据二项 式的结构特征进行适当变形,可使展开多项式的过程简化.记 准、记熟二项式 (a + b) n 的展开式,是解答好与二项式定理有关 问题的前提,对较复杂的二项式,有时可先化简再展开,会更 简便.
變數與函數 大綱 : 對應關係 函數 函數值 顧震宇 台灣數位學習科技股份有限公司. 對應關係 蛋餅飯糰土司漢堡咖啡奶茶 25 元 30 元 25 元 35 元 25 元 20 元 顧震宇 老師 台灣數位學習科技股份有限公司 變數與函數 下表是早餐店價格表的一部分: 蛋餅 飯糰 土司 漢堡 咖啡 奶茶.
1.
中華大學九十三學年度第二學期「複變分析」網路輔助教學教材
Chapter 12 Complex Numbers and Functions
第三章重要公式與定理之復習 1. 收斂到 f( x )。.
請開喇叭 我的家鄉我的情 2年11班 黃筑筠.
319 Chapter 10 基本元件及相量.
第四章 數列與級數 4-1 等差數列與級數 4-2 等比數列與級數 4-3 無窮等比級數 下一頁 總目錄.
5.1 自然對數函數:微分 5.2 自然對數函數:積分 5.3 反函數 5.4 指數函數:微分與積分 5.5 一般底數的指數函數和應用 5.6 反三角函數:微分 5.7 反三角函數:積分 5.8 雙曲函數.
XI. Hilbert Huang Transform (HHT)
Signal and Systems 教師:潘欣泰.
工程數學 Chapter 12 PDE 楊學成 老師.
3-3 Modeling with Systems of DEs
期末考的範圍遠遠多於期中考,要了解的定理和觀念也非常多
課程大綱 第一章 Laplace 變換 1.1 基本概念與定理 1.2 常係數之線性微分方程式的 Laplace 變換解
積分 (Integration) 查詢的方法
Differentiation 微分 之一 微分的基本原理.
The Fourier Transform 第七章 傅利葉轉換
Chapter 11 Orthogonal Functions and
本章大綱 9.1 Sequence數列 9.2 Infinite Series無窮級數
期末考的範圍遠遠多於期中考,要了解的定理和觀念也非常多
Chapter 14 Integral Transform Method
Differentiation 微分 之一 微分的基本原理.
Methods of Integration 積分的方法
力只與位置有關的運動方程式.
本章大綱 6.1 Inverse Functions反函數 6.2 Inverse Trigonometric Functions
Wavelet transform 指導教授:鄭仁亮 學生:曹雅婷.
第 一 單 元 不定積分.
第四單元 微積分基本定理.
第一章 直角坐標系 1-1 數系的發展.
第一章 直角坐標系 1-3 函數圖形.
XIV. Orthogonal Transform and Multiplexing
概論 Yung-Chung Chen * Assistant Professor, Department of Logistics Management, SHU-TE University, Kaohsiung, Taiwan.
Definition of Trace Function
工程數學 Chapter 10 Fourier Series , Integrals , and Transforms 楊學成 老師.
大綱:加減法的化簡 乘除法的化簡 去括號法則 蘇奕君 台灣數位學習科技股份有限公司
微積分網路教學課程 應用統計學系 周 章.
農業金融講義 課程大綱.
工程數學 Chapter 15 Power Series , Taylor Series 楊學成 老師.
函數與極限 函數 函數的圖形 函數的極限 連續函數 在無窮大處的極限 無窮極限 經濟學上的函數 商用微績分 Chapter 1 函數與極限.
原子/分子系統架構 Quantum Chemistry Dynamics Monte Carlo.
本講義為使用「訊號與系統,王小川編寫,全華圖書公司出版」之輔助教材
本講義為使用「訊號與系統,王小川編寫,全華圖書公司出版」之輔助教材
第一章 直角坐標系 1-3 函數及其圖形.
第三章 指數與對數 3-1 指數 3-2 指數函數及其圖形 3-3 對數 3-4 對數函數及其圖形 3-5 常用對數 回總目次.
工程數學 Chapter 14 Complex integration indefinite integral 楊學成 老師.
1 Chapter 9 交變正弦波.
11621 : Small Factors ★★☆☆☆ 題組:Problem Set Archive with Online Judge
Principle and application of optical information technology
17.1 相關係數 判定係數:迴歸平方和除以總平方和 相關係數 判定係數:迴歸平方和除以總平方和.
第三十單元 極大與極小.
第十七講 重積分 應用統計資訊學系 網路教學課程 第十七講.
Presentation transcript:

物數(二) 第十章 傅立葉分析 (Fourier Analysis) 第十一章 偏微分方程式 (Partial Differential Equations) 第十二章 複數與函數 (Complex Numbers and Functions) 第十三章 複變積分 (Complex Integrations) 第十四章 羃級數與泰勒級數 (Power Series, Taylor Series) 第十五章 勞倫級數與餘數積分 (Laurent Series, Residue Integration) 第十六章 應用在位勢理論的複變分析 (Complex Analysis Applied to Potential Theory) 評分標準: 平時成績 : 30% 期中考 : 35% 期末考 : 35% Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) 對於週期性函數而言,包含餘弦與正弦項的傅立葉級數是一個重要的代表級數.它在求解常微分與偏微分方程式方面是一個重要的工具. 傅立葉級數的理論是較為複雜,但是它的應用卻是簡單方便的.對於非連續性週期函數的表示上,它強過泰勒級數. 學習完傅立葉級數後,我們將傅立葉級數的觀念與技巧將以推廣到非週期性函數上,這將利用到傅立葉積分與傅立葉轉換. Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) 週期性函數(Periodic Functions) 假如對於所有的實數 x 並存在有任一正數 p 使得一函數 f(x)具有以下特性: 則此函數 f(x)稱為週期性函數. p 稱之為 f(x)的基本週期(fundamental period). 2p , 3p, 4p, … np 亦為 f(x)的週期. Q : 此時 f (ax) 的週期為何? Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) 週期性函數(Periodic Functions) * 假如 f(x) 與 g(x) 的基本週期均為 p 時, 則 a, b 為常數 h(x)函數的基本週期亦為 p. * 函數 f(x) = c = 常數 : 亦為週期性函數,但是它沒有基本週期. * 正弦與餘弦函數為常見的週期性函數 * 常見的非週期性函數包括有 : Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) 三角的級數(Trigonometric Series) 這些正弦與餘弦函數均為具有 2π週期的週期性函數 三角的級數(trigonometric series) 其中 a0, a1, a2, b1, b2, b3, .. 為實數 Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) 傅立葉級數(Fourier Series) 一個實數週期性函數(週期為 2)可以三角的級數來展開,此級數亦稱之為傅立葉級數(Fourier series) where n = 1,2,3,….. n = 1,2,3,….. Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) 傅立葉係數之尤拉公式(Euler Formulas for the Fourier Coefficients) 常數項係數 a0 Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) The Orthogonality Condition for all integral m and n Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) 傅立葉係數之尤拉公式(Euler Formulas for the Fourier Coefficients) 餘弦項係數 an Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) 傅立葉係數之尤拉公式(Euler Formulas for the Fourier Coefficients) 正弦項係數 bn Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) 矩形波(Rectangular Wave) Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) 矩形波(Rectangular Wave) Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) 矩形波(Rectangular Wave) Theorem 1 Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) Homework Problem Set 10.2 8 16 Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) 任何週期 p = 2L的函數(Functions of Any Period p = 2L) 週期為 2 函數的傅立葉級數 週期為 2L 函數的傅立葉級數 Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) 任何週期 p = 2L的函數(Functions of Any Period p = 2L) Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) 任何週期 p = 2L的函數(Functions of Any Period p = 2L) n = 1 n = 2, 3, …. n 為奇數時 n = 2, 4, 6, …. Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) 任何週期 p = 2L的函數(Functions of Any Period p = 2L) n = 1 n = 2, 3, …. Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) 偶函數與奇函數(Even and Odd Functions) The Odd Function f(x) is an odd function, e.g. For all integer m and n Fourier sine series Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) 偶函數與奇函數(Even and Odd Functions) The Even Function f(x) is an Even function, e.g. For all integer m and n Fourier cosine series Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) The General Function E(-x) = E(x) O(-x) = -O(x) Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) f(x) Example 1– Square wave 2k x -4π -3π -2π -π π 2π 3π 4π For n = odd For n = even f(x)-k is an odd function Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) Example 2– Sawtooth wave Theorem 2 --- Sum of functions f1 + f2 的傅立葉係數為 f1 與 f2 個別傅立葉係數的加總 Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) Half-Range Expansions f1 is an even periodic extension of f f1  Fourier cosine series f2 is an odd periodic extension of f f2  Fourier sine series Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) Half-Range Expansions Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) Even periodic extension Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) 複數傅立葉級數(Complex Fourier Series) Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) 複數傅立葉級數(Complex Fourier Series) Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) Example 1 f(x)=ex, -<x<, f(x+2 )=f(x),將此函數以複數傅立葉級數來表示 Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) 驅動振盪(Forced Oscillations) Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) m = 1g, c = 0.02 g/s, k = 25 g/s2 n = 1,3,5,… 振幅 振幅最大 Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) 三角多項式的近似(Approximation by Trigonometric Polynomials) 當一週期(2)函數 f(x)以傅立葉級數展開時: 當我們計算前N項總和時,此近似值將會是誤差最小的! Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) 當 當 Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) 定理一 : 最小平方誤差 在區間- ≤ x ≤ 中,若且唯若F(x)的係數為 f 的傅立葉係數,則F(N為固定值)相對於 f 的總平方誤差為最小,此最小值 E* 可由下式求得: 貝索不等式(Bessel inequality) 傅立葉係數 Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) 傅立葉積分(Fourier Integrals) 週期性函數 非週期性函數 傅立葉級數 傅立葉積分 2L>2 Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) Amplitude spectrum 2L=8 當2L = 2k 時,每半波有 2k-1 -1個振幅 2L=16 當L   , wn  0 Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) 現考慮週期 2L 的週期性函數 fL(x) 令 令 L  且假設非週期性函數 為絕對可積分 Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) 傅立葉積分(Fourier Integrals) Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) example Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) 狄里西雷不連續因數(Dirichlet’s discontinuous factor) Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) x = 0 正弦積分(sine integral) Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) 當L   , oscillation x =  1 吉布斯現象(Gibb’s Phenomenon) 令 w+wx=t 令 w-wx=-t Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) 傅立葉餘弦積分(Fourier Cosine Integrals) 若 f(x)為偶函數 B(w) = 0 傅立葉正弦積分(Fourier Sine Integrals) 若 f(x)為奇函數 A(w) = 0 Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) example 求此函數的傅立葉餘弦積分和正弦積分: 傅立葉餘弦積分 Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) 傅立葉正弦積分 Laplace integral Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) 傅立葉餘弦轉換(Fourier Cosine Transforms) 傅立葉餘弦積分 現令 為 f(x)的傅立葉餘弦轉換 為 的反傅立葉餘弦轉換 Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) 傅立葉正弦轉換(Fourier Sine Transforms) 傅立葉正弦積分 現令 為 f(x)的傅立葉正弦轉換 為 的反傅立葉正弦轉換 Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) example 當 f(x) 在 0<x< 時均等於一常數k時,則上兩式轉換均不存在 Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) 傅立葉正(餘)弦轉換之線性運算 Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) 導數之傅立葉餘弦轉換 假設 f(x)在 x 軸上為連續且絕對可積分,且 f’(x)在各有限區間中為片段連續, 而且當x時f(x)0,則 Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) 導數之傅立葉餘弦轉換 Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) 導數之傅立葉正弦轉換 假設 f(x)在 x 軸上為連續且絕對可積分,且 f’(x)在各有限區間中為片段連續, 而且當x時f(x)0,則 Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) 導數之傅立葉正弦轉換 Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) 複數型式之傅立葉積分 實數之傅立葉積分 與w無關 W的偶函數 所以[…]為w的偶函數, 稱之為F(w) Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) 複數型式之傅立葉積分 If Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) 傅立葉轉換(Fourier Transforms) 為 f 的傅立葉轉換 為 的反傅立葉轉換 Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) Physical Interpretation : Spectrum 想像成所有可能頻率之正弦振盪的重疊 : 頻譜密度, 代表 f(x)在頻率區間w與w+Δw之間的強度 為系統之總能量 Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) 單一頻率 若系統較為複雜,且 y = f(x)為具有傅立葉級數表示式的週期函數時,則 不再只是一個能量項 ,而是各係數 cn 之 的級數,此為離散頻 譜(discrete spectrum)或點頻譜(point spectrum),包含不同的各種頻率 Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) 傅立葉轉換之線性運算 Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) 導數之傅立葉轉換 假設 f(x)在 x 軸上為連續且當 時 f(x)0,假設f’(x)在x軸上為絕對可積分 Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) 傅立葉轉換之摺積定理(convolution theorem) 函數 f 與 g 的摺積定義 : 傅立葉轉換之摺積定理(convolution theorem) 假設 f(x)和 g(x)在 x 軸上為片段連續,有界且絕對可積分 Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) 令 x – p = q, 則 x = p + q Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 10 傅立葉分析 (Fourier Analysis) Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung