统计 (1)随机抽样 ①理解随机抽样的必要性和重要性. ②会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法. (2)总体估计 ①了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.

Slides:



Advertisements
Similar presentations
因数与倍数 2 、 5 的倍数的特征
Advertisements

3 的倍数的特征 的倍数有 : 。 5 的倍数有 : 。 既是 2 的倍数又是 5 的倍数有 : 。 12 , 18 , 20 , 48 , 60 , 72 , , 25 , 60 ,
2 和 5 的倍数的特征 运动热身 怎样找一个数的倍数? 从小到大写出 2 的倍数( 10 个): 写出 5 的倍数( 6 个) 2 , 4 , 6 , 8 , 10 , 12 , 14 , 16 , 18 , 20 5 , 10 , 15 , 20 , 25 , 30.
要点 · 疑点 · 考点 要点 · 疑点 · 考点 课 前 热 身 课 前 热 身 能力 · 思维 · 方法 能力 · 思维 · 方法 延伸 · 拓展 延伸 · 拓展 误 解 分 析 误 解 分 析 第 4 课时 统计.
宁夏银川九中 高国君. 一、钻研教材 “ 课标 ” ,解读高考说明 教材是学生智能的生长点,也是考试内容的载 体,是高考命题的依据.《新课程标准》指引着数 学教育的方向,是对教师教学、学生学习提出的具 体要求.高考说明的重要性更是不言而喻. 教材中,概率与统计主要有两块:其一:必修 3 是《统计》与《概率》;其二:选修.
一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
冀教版四年级数学上册 本节课我们主要来学习 2 、 3 、 5 的倍数特征,同学们要注意观察 和总结规律,掌握 2 、 3 、 5 的倍 数分别有什么特点,并且能够按 要求找出符合条件的数。
人教新课标一年级数学下册. 教学目标 1. 初步掌握 100 以内数的顺序。 2. 初步会比较 100 以内数的大小。 3. 初步结合具体事物,使同学们 感 受 100 以内数的意义,会用 100 以 内的数表示日常生活中的事物, 并进行简单的估计和交流。
2 、 5 的倍数特征 集合 2 的倍数(要求) 在百数表上依次将 2 的倍数找出 并用红色的彩笔涂上颜色。
Chapter 3: SQL.
《解析几何》 -Chapter 3 §7 空间两直线的相关位置.
两位数乘两位数 (进位)乘法 四 乘法(第二课时).
一、能线性化的多元非线性回归 二、多元多项式回归(线性化)
6.9二元一次方程组的解法(2) 加减消元法 上虹中学 陶家骏.
第一章 算法初步 考试目标.
第二课时 求一个数的几分之几是多少的两步应用题
人教新课标版三年级数学下册 笔算除法.
1.1.3四种命题的相互关系 高二数学 选修2-1 第一章 常用逻辑用语.
常用逻辑用语复习课 李娟.
第一章 行列式 第五节 Cramer定理 设含有n 个未知量的n个方程构成的线性方程组为 (Ⅰ) 由未知数的系数组成的n阶行列式
章末热点考向专题.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
[引入课题].
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
C++中的声音处理 在传统Turbo C环境中,如果想用C语言控制电脑发声,可以用Sound函数。在VC6.6环境中如果想控制电脑发声则采用Beep函数。原型为: Beep(频率,持续时间) , 单位毫秒 暂停程序执行使用Sleep函数 Sleep(持续时间), 单位毫秒 引用这两个函数时,必须包含头文件
复习引入 数据 统计学的核心思想是 根据样本的情况对总体的相应情况作出估计和推断 2.统计学研究问题的步骤
第三章 多维随机变量及其分布 §2 边缘分布 边缘分布函数 边缘分布律 边缘概率密度.
面向对象建模技术 软件工程系 林 琳.
走进编程 程序的顺序结构(二).
第四章 抽样设计 本章主要内容: 抽样调查概述 随机抽样技术 非随机抽样技术 抽样误差与样本量.
第十章 方差分析.
绿色圃中小学教育网 比例 比例的意义 绿色圃中小学教育网
第七章 参数估计 7.3 参数的区间估计.
人教版五年级数学上册第四单元 解方程(一) 马郎小学 陈伟.
习题 一、概率论 1.已知随机事件A,B,C满足 在下列三种情况下,计算 (1)A,B,C相互独立 (2)A,B独立,A,C互不相容
计算.
抽样和抽样分布 基本计算 Sampling & Sampling distribution
相似三角形 石家庄市第十中学 刘静会 电话:
模型分类问题 Presented by 刘婷婷 苏琬琳.
线性规 Linear Programming
线 性 代 数 厦门大学线性代数教学组 2019年4月24日6时8分 / 45.
5.2 常用统计分布 一、常见分布 二、概率分布的分位数 三、小结.
人教版高一数学上学期 第一章第四节 绝对值不等式的解法(2)
用计算器开方.
实体描述呈现方法的研究 实验评估 2019/5/1.
6.4 你有信心吗?.
成绩是怎么算出来的? 16级第一学期半期考试成绩 班级 姓名 语文 数学 英语 政治 历史 地理 物理 化学 生物 总分 1 张三1 115
北师大版五年级数学下册 分数乘法(一).
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
学习目标 1、limit的作用 2、实例操作.
3.1.2 空间向量的数量积运算 1.了解空间向量夹角的概念及表示方法. 2.掌握空间向量数量积的计算方法及应用.
九年义务教育五年制小学教科书 数 学 第 十 册 《比例的意义和基本性质》 新野县城关镇南关小学:邹汉苗.
相关与回归 非确定关系 在宏观上存在关系,但并未精确到可以用函数关系来表达。青少年身高与年龄,体重与体表面积 非确定关系:
人教版小学数学三年级上册 认识几分之几 gjq.
概 率 统 计 主讲教师 叶宏 山东大学数学院.
多层循环 Private Sub Command1_Click() Dim i As Integer, j As Integer
学习目标 1、如何对结果进行分组 2、分组函数的一些实用方法.
分数再认识三 真假带分数的练习课.
北师大版三年级数学上册 0×5=?.
§5.2 抽样分布   确定统计量的分布——抽样分布,是数理统计的基本问题之一.采用求随机向量的函数的分布的方法可得到抽样分布.由于样本容量一般不止2或 3(甚至还可能是随机的),故计算往往很复杂,有时还需要特殊技巧或特殊工具.   由于正态总体是最常见的总体,故本节介绍的几个抽样分布均对正态总体而言.
概率论与数理统计B.
第二节 函数的极限 一、函数极限的定义 二、函数极限的性质 三、小结 思考题.
用样本估计总体.
第五章 数理统计的基本知识 §5.1 总体与样本.
我们能够了解数学在现实生活中的用途非常广泛
Presentation transcript:

统计 (1)随机抽样 ①理解随机抽样的必要性和重要性. ②会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法. (2)总体估计 ①了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.

②理解样本数据标准差的意义和作用,会计算数据标准差. ③能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释. ④会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想. ⑤会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.

(3)变量的相关性 ①会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系. ②了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程. (4)了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题.

①独立检验 了解独立检验(只要求2×2列联表)的基本思想、方法及其简单应用. ②假设检验 了解假设检验的基本思想、方法及其简单应用. ③聚类分析 了解聚类分析的基本思想、方法及其简单应用. ④回归分析 了解回归的基本思想、方法及其简单应用.

1.从内容上看,以应用题为命题背景,考查分层抽样、系统抽样的有关计算,或三种抽样方法的区别,以及茎叶图、频率分布表、频率分布直方图的识图及运用. 2.从考查形式上看,题型一般为选择题、填空题,有大题. 3.从能力要求上看,要求学生具备一定的分析问题和解决问题的能力以及一定的读图和识图能力.

预计在2012年高考中: 1.三种抽样方法,频率分布表,频率分布直方图和茎叶图的有关计算仍为考试的重点. 2.出现解答题的可能性小,以选择、填空题出现的可能性大. 3.主要是通过案例体会运用统计方法解决实际问题的思想和方法.如:回归分析和独立性检验.

总体:所要考察对象的 ,叫做总体.其中每一个要考察的对象称为 . 样本:研究总体的性状.当总体中包含的个体很多时,很难对每一个个体进行考察,一个行之有效的方法是从 ,叫做总体的一个 。 其一数值指标的全体构成的集合 个体 总体中随 机抽取若干个个体进行考察,这若干个个体构成的集合 样本

简单随机抽样:设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的. 就把这种抽样方法叫做 系统抽样:当总体中的个体数目较多时,可将总体 ,然后按照 从每一部分抽取1个个体得到所需要的样本,这种抽样方法叫做 . 各个个体被抽到的机会都相等. 简单随机抽样. 抽签法和随机数表法 分成均衡的若干部分 事先定出的规则 系统抽样

分层抽样:在抽样时,将总体分成 ,然后按照一定的 ,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法就叫做 互不交叉的层 比例 分层抽样.

[答案] C

2.(2011·惠州二模)为了了解某校高中学生的近视眼发病率,在该校学生中进行分层抽样调查,已知该校高一、高二、高三分别有学生800名、600名、500名,若高三学生共抽取25名,则高一学生抽取的人数是________. [答案] 40

3.(2009·广东高考题)某单位200名职工的年龄分布情况如下图,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1-200编号,并按编号顺序平均分为40组(1-5号,6-10号…,196-200号).若第5组抽出的号码为22,则第8组抽出的号码应是________.若用分层抽样方法,则40岁以下年龄段应抽取________人.

[答案] 37;20

用随机数表进行抽样有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定开始的数字,这些步骤的先后顺序应为(  ) A.①②③      B.①③② C.③②① D.③①② [答案] B

(2010·湖北,6)将参加夏令营的600名学生编号为:001,002,…,600 (2010·湖北,6)将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区.三个营区被抽中的人数依次为(  ) A.25,17,8 B.25,16,9 C.26,16,8 D.24,17,9

[解析] 总体数为600,样本的容量是50,∴600÷50=12.因此,每隔12个号能抽到一名,由于随机抽得第一个号码为003,按照系统抽样的操作步骤在第1营区应抽到25人,第2营区应抽到17人,第3营区应抽到8人.故选A. [答案] A [点评与警示] 根据系统抽样的概念,若n部分中在第一部分抽取的号码为m,分段间隔为d,则由等差数列的知识可得在第k部分中抽取的第k个号码为m+(k-1)d.

 将参加数学竞赛的1000名学生编号如下:0001,0002,0003,…,1000,从中抽取一个容量为50的样本,考虑采取系统抽样,则分段的间隔K为________. [答案] 20

(2008·广东)某校共有学生2000名,各年级男、女生人数如下表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0. 19  (2008·广东)某校共有学生2000名,各年级男、女生人数如下表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为(  ) A.24   B.18    C.16   D.12 一年级 二年级 三年级 女生 373 x y 男生 377 370 z

[答案] C

某校有高一、高二、高三三个年级的学生,其相应人数之比为3∶3∶2,现用分层抽样方法抽出一个容量为n的样本,样本中高三有16人,那么,此样本的容量n=________. [答案] 64

为了考察某校的教学水平,将抽查这个学校高三年级部分学生的本学年考试成绩进行考察.为了全面地反映实际情况,采取以下三种方式进行(已知该校高三年级共有14个教学班,并且每个班内的学生都已经按随机方式编好了学号,假定该校每班人数都相同). ①从全年级14个班中任意抽取一个班,再从该班中任意抽取14人,考察他们的学习成绩; ②每个班都抽取1人,共计14人,考察14个学生的成绩;

③把学校高三年级的学生按成绩分成优秀、良好、普通三个级别,从中抽取100名学生进行考察(已知若按成绩分,该校高三学生中优秀学生有105名,良好学生有420名,普通学生有175名).根据上面的叙述,试回答下列问题: (1)上面三种抽取方式中,其总体、个体、样本分别指什么?每一种抽取方式抽取的样本中,其样本容量分别是什么? (2)上面三种抽取方式各自采用何种抽取样本的方法? (3)试分别写出上面三种抽取方式各自抽取样本的步骤.

[解] (1)这三种抽取方式中,其总体都是指该校高三全体学生本年度的考试成绩,个体都是指高三年级每个学生本年度的考试成绩.其中第一种抽取方式中样本为所抽取的14名学生本年度的考试成绩,样本容量为14;第二种抽取方式中样本为所抽取的14名学生本年度的考试成绩,样本容量为14;第三种抽取方式中样本为所抽取的100名学生本年度的考试成绩,样本容量为100. (2)上面三种抽取方式中,第一种方式采用的方法是简单随机抽样法;第二种方式采用的方法是系统抽样法和简单随机抽样法;第三种方式采用的方法是分层抽样法和简单随机抽样法

(3)第一种方式抽样的步骤如下: 首先在这14个班中用抽签法任意抽取一个班,然后从这个班中按学号用随机数法或抽签法抽取14名学生,考察其考试成绩. 第二种方式抽样的步骤如下: 首先在第一个班中,用简单随机抽样法任意抽取某一学生,记其学号为x,然后在其余的13个班中,选取学号为x的学生,共计14人. 第三种方式抽样的步骤如下:

[点评与警示] 本题关键是灵活运用统计初步中的一些基本概念和基本方法,对照简单随机抽样、系统抽样、分层抽样的概念得出抽样过程.由于分层抽样充分利用总体的一些信息,从而具有较好的代表性,在实践中有着广泛的应用.设计抽样方法时,一方面要使样本具有好的代表性,就要将总体“搅拌均匀”,使每个个体有同样的机会被抽中,另一方面应当努力使抽样过程简便易行.

1.简单随机抽样、系统抽样、分层抽样的比较: 类别 共同点 各自特点 联系 适用范围 简单随机抽样 ①抽样过程中每个个体被抽到的可能性相等 ②每次抽出个体后不再将它放回,即不放回抽样 从总体中逐个抽取 总体个数较少 系统抽样 将总体均匀分成几部分,按预先制定的规则在各部分中抽取 在起始部分取样时采用简单随机抽样 总体个数较多 分层抽样 将总体分成几层,分层进行抽取 各层抽样时采用简单随机抽样或系统抽样 总体由差异明显的几部分组成