Chapter 6 風險、報酬與投資組合. Chapter 6 風險、報酬與投資組合 學習重點 理解各種報酬率之計算及功能組合暨機會成本的評估 探討風險溢酬之概念及分析報酬變異數、標準差及其風險組成因子 分析多角化經營對公司風險及報酬的影響 介紹投資組合風險衡量方式 探討效率投資組合並尋找最佳投資集合.

Slides:



Advertisements
Similar presentations
高等学校英语应用能力考试 考务培训 兰州文理学院教务处 2014 年 12 月. 考务培训 21 日请监考人员上午 8:00 (下午 2:30 )到综合楼 205 教室集合,查看 监考安排,由考务负责人进行考务 培训。
Advertisements

(一)辦桌文化起始略說: 1. 祭祀宗教 2. 生命禮儀 3. 外燴 --- 老師、師公、師傅、總鋪師 4. 搬桌搬椅時代 (二) 食物食材 1. 靠山考海 2. 基本:炒米粉、糍、檳榔 3. 小吃搬上桌 (三) 變變變 1. 調味不同 2. 師承不同 3. 地點也變.
升中 – 如何面試 ? 升中 – 如何面試 ? 面試知多少?. 為何要面試?  面試可更全面地觀察學生不同的表現和能 力 中、英、普語文能力 表達能力 溝通能力 理解、分析、創意、思考能力 儀表、談吐、禮貌及眼神 自信心 對社會問題的關注.
第九章 资本资产定价模型.
第六章 资本资产定价(CAPM)理论.
第4章 交易性金融资产与可供出售金融资产 学习目标
江西财经大学会计学院 Topic F Cost of capital. 江西财经大学会计学院 PART F-15 The cost of capital.
第八章 互换的运用.
知识模块06 风险与收益率.
第九章 证券投资组合管理 东北财经大学金融学院.
观赏星空是一种高尚的爱好 假如星星一千年才出现一次,设想一下那将是多么令人激动的景象啊!然而由于天空中每晚都有星星,我们几乎难得看上一眼。
(4F01) 陳可兒 (4F03) 張令宜 (4F05) 何秀欣 (4F14) 潘美玲
105年基北區高中職適性入學宣導 教育會考後相關作業說明
資料分析 ---敘述統計分析.
大綱 一、設立科別 二、課程規劃原則 三、科目與學分數表 四、新課綱課程架構 五、新課綱課程規劃 (1)一般科目 (2)專業科目
老師 : 製作 觀光暨餐旅財務管理 ch1.
项目六 项目投资管理 【知识目标】 了解项目投资的有关含义、特点和决策程序 掌握现金流量含义和估算方法
《财务管理》 主讲:钟小玲 讲师 硕士 联系电话:
企业所得税几项热点难点 业务问题讲析 湛江市地税局税政科 钟胜强.
小学《人•自然•社会》 五年级教材解读 浙江省教育厅教研室 李 荆 -
輕歌妙舞送黃昏 組員名單 組長:程鵬飛 組員:黎達華 劉展鵬 邱迦欣.
第十三章 有效资本市场 有效资本市场(efficient capital market)是一个证券价格能根据新信息的出现迅速调整的市场,即现行的证券价格能够反映有关证券的全部信息。 研究意义:第一,对投资者有重要的现实意义;第二,观点相差很大,有很多未知问题需要研究。
一、证券组合理论 二、资本资产定价模型 三、有效市场
『財務管理』 財務金融學系 蕭育仁 助理教授 Office: C420 Office hour: Thursday afternoon or by appointment.
Risk and Return.
第十四章 專案管理.
第八章 证券组合管理理论.
中華民國空軍34中隊進行夜間偵察任務情形與畫伏夜出的蝙蝠相同,因此以「蝙蝠中隊」命名,而所屬偵察機均漆成黑色,而又稱作「黑蝙蝠」。隊徽是一隻展翅的黑蝙蝠,在北斗七星上飛翔於深藍的夜空中,翅膀穿透外圍的紅圈,象徵潛入赤色鐵幕。
期考議題 單元一:資訊科技(eg上網活動)與人際關係 單元二:青少年社政參與(80後) 單元二:郊野公園與房屋政策/問題
大學多元入學方案 財務金融二 王詩茹.
唐五代兩宋詞 方舟p.69.
『財務管理』 財務金融學系 蕭育仁 助理教授 Office: C420 Office hour: Thursday afternoon or by appointment.
第八章 现代证券投资理论 第一节 现代证券投资理论的产生与发展 一 现代证券投资理论的产生 二 现代证券投资理论的发展.
人地關係 ── 熱帶雨林 人文活動對環境的影響.
小儿营养不良 第四篇第二章第二节小儿营养不良.
2016年莱芜市乡村医生在岗培训 启动会.
Chapter6 投资银行.
单元 SD 5 菜鸟学飞 附件二 想学飞的职场菜鸟.
現代投資學 Chapter 14 產業分析.
第9章 资本结构:理论与运用.
高中新课改理念下的教学及其评价 吴永军 江苏省南京师范大学教育科学学院.
伯裘書院 環保廣告能否有效 地推動環保意識.
4H (1)歐宛曈 (9)李熹漩 (12)吳紀芙 (14)唐曉筠
第七章 国际金融市场 本章主要讲述以下几个内容: 1.国际金融市场概述 2.国际货币市场 3.国际资本市场 4.欧洲货币市场
1.商业银行经营风险 现代金融机构面临的基本风险,包括: 注意各种风险的相互作用,如利率风险和信用风险。
禪宗的教外別傳.
國際投資風險面面觀 ---匯率風險&國際投資組合的風險管理
2010 NTU International Conference on Finance
第十三章 報酬、風險與     證券市場線.
信用風險模型.
財務管理 第8章 風險與報酬率.
固定收益證券之投資 市場風險與風險值 共變異法及其應用 歷史模擬法 市場風險與資本計提
International Financial Management 11th Edition
第11章 證券投資組合.
第八章 现代证券投资理论 证券组合理论 资本资产定价理论 套利定价理论.
統計學: 應用與進階 第4 章: 多變量隨機變數.
第十一章 套利定价模型 第一节 因素模型: 单因素模型和多因素模型 第二节 套利定价理论:
Review 統 計 方 法 的 順 序 確定目的 蒐集資料 整理資料 分析資料 推論資料 (變量,對象) (方法:普查,抽樣)
第八章 報酬與風險.
Warren E. Buffett, 1995 Case 華倫巴菲特分析個案 林修葳
教材編號:A303 專案起始 「專案管理基礎知識與應用實務」第三章 CPMP專案管理知識體系課程 1.
財務管理原理 姜堯民 著 第八章 報酬與風險 新陸書局股份有限公司 發行 姜堯民 著.
第一章 緒論.
投資風險與投資組合 Objectives: 3-1 How to describe Return: Risky vs. Risk-free
颱風與防災 颱風知多少.
第二篇 公司風險管理基本過程 公司風險管理與經營管理(Operational Management)及策略管理(Strategic Management)均會產生關聯。經營管理重操作,策略管理重策略。…
设岗申请 审核发布 岗位申请 助教培训 津贴发放 工作考核 授课教师 岗位要求 工作内容 开课单位 确定课程、岗位 发布需求 研究生
聖經的獨特.
第八章投資組合風險衡量 第一節 投資組合管理的基本流程與步驟 第二節 債券投資組合的利率風險衡量 第三節 債券投資組合的信用風險衡量.
慧能的教外別傳.
Presentation transcript:

Chapter 6 風險、報酬與投資組合

學習重點 理解各種報酬率之計算及功能組合暨機會成本的評估 探討風險溢酬之概念及分析報酬變異數、標準差及其風險組成因子 分析多角化經營對公司風險及報酬的影響 介紹投資組合風險衡量方式 探討效率投資組合並尋找最佳投資集合 定義β值並運用資本資產定價模型計算資金機會成本

總報酬率 投資股票或債券的報酬主要來自於兩個部分: 總報酬率=資本利得率+股利收益率: 在考慮通貨膨脹率後,可以計算出實質報酬率: 股票股利或債券利息股利收益率(Dividend Yield) 資本利得或資本損失資本利得率(Capital Gain Rate) 總報酬率=資本利得率+股利收益率: 在考慮通貨膨脹率後,可以計算出實質報酬率:

持有期間報酬率 假設你今天收到現金股利之後,立刻將股利再拿 去買該股票,而且往後每一期你一收到股利都這 麼做的話,該如何計算你的報酬率呢? 計算公式如下: 其中 即為第T期的總報酬率 Eg.假設台塑未來三年的股票總報酬率分別為33%、18%、- 10%的話,那麼我們就可以計算出,今天若投資台塑1元, 3年後你的投資總價值為: 總價值=(1+0.33)×(1+0.18)×(1-0.10)=1.41  41%的報酬率就是這3年的持有期間報酬率

年平均報酬率 可以利用各年度的年報酬率算出投資期間的年平均報酬率 計算公式為: 年平均報酬率其實是在計算報酬率的算數平均數 計算期間越長的話,所得到的年平均報酬率將越接近該股票的真實報酬率

報酬率與風險溢酬 最常拿來比較的投資工具是政府公債的國庫券 國庫券的報酬率稱為無風險報酬率(Risk-Free Return) 屬於零息債券 通常在一年以內會到期 沒有任何違約風險 國庫券的報酬率稱為無風險報酬率(Risk-Free Return) 國庫券年平均報酬率與股票年平均報酬率的差異稱為有風險資產的超額報酬(Excess Return),又稱為風險溢酬(Risk Premium) 股票市場報酬率=國庫券利率+風險溢酬

風險溢酬 美國自1926年至2004年的各種投資商品的年平均報酬率與風險溢酬: 股票市場的風險溢酬為8.45%(=12.32%-3.87%) 高風險溢酬是因為股票市場有著比較高的投資風險 投資組合 年平均報酬率 風險溢酬 標準差 股票市場 12.32% 8.45% 20.36% 公司債 6.52% 2.65% 7.17% 國庫券 3.87% 3.18% 通貨膨脹 3.20% 4.50% 資料來源:CRSP and Global Financial Data

風險溢酬的應用 風險溢酬可用來評估投資的預期機會成本 E.g.假設今年國庫券的利率為5%,歷史的平均風險溢酬為8.45%,那麼今年股票市場上的預期報酬率為: 預期報酬率=今年國庫券利率+年平均風險溢酬 =5%+8.45%=13.45%

變異數與標準差 一般最常用來衡量風險大小的統計工具,就是變 異數(Variance)和標準差(Standard Deviation) 我們以Var或 來代表變異數,而以SD或 來代 表標準差,其公式如下: 其中T表示計算的期數, 表示年平均報酬率, 代表各期的報酬率

變異數與標準差的計算 首先計算出這五年的年平均報酬率: 假設1999-2003年股票市場的報酬率分別如下表所示: 接著代入變異數公式: 年 2000 2001 2002 2003 報酬率 2.5% 20.7% 32.5% 8.6% 14.3%

風險與多角化投資(Diversification) 2001年至2008年,台灣股票市場的大盤報酬率以及8個具有代表性的股票的標準差: 標的 報酬率之標準差 大盤加權指數 23.5% 台積電 29.6% 聯電 27.5% 台塑 32.9% 中鋼 30.4% 國泰金 25.2% 聯發科 65.6% 友達 65.7% 統一 41.7% 為何大盤的標準差最低? 因為多角化投資 可以降低投資風險

風險與多角化投資 當我們所挑選的投資組合內的股票越來越多的時候,投資組合的股票數目與投資組合報酬率之標準差的關係如下圖: 10 20 30 投資組合標準差 股票數目 非系統性風險 系統性風險

非系統性風險與系統性風險 可以透過多角化投資而降低的風險,我們稱之為非 系統性風險(Unsystematic, Unique, 或Firm-Specific Risk);無法透過多角化投資而降低的風險,我們稱 之為系統性風險(Systematic, 或 Market Risk) 非系統性風險主要是源自於公司本身的經營問題或 者新競爭者出現等可能會影響到公司股價的因素 系統性風險則是源自於那些任何公司都無法避免的 整體經濟環境災害,例如:美國次級房貸危機

共變異數(Covariance) 與相關係數(Correlation Coefficient) 標準差的主要是用來衡量個別股票的波動程度 若要衡量不同股票報酬率間的關係,我們就必須計算共變異數與相關係數 兩個變數間共變異數 與相關係數 的公式為: 為情況t時股票A的報酬率, 為平均預期報酬率 為股票A報酬率的標準差,以此類推

共變異數與相關係數 , 當兩個股票走勢相同的時候,共變異數會大於0 當兩張股票走勢相反的時候,共變異數會小於0 相關係數永遠會介於+1與-1之間 相關係數> 0,稱為正相關;若相關係數< 0,稱為負相關;若相關係數= 0,稱為不相關

共變異數的計算 股票A、B在三種景氣情況下(發生機率相等)的報酬率如下表: 股票A、B的共變異數為: 景氣衰退 -10% -20% (=-10%-10%) 10% 5.67% (=10%-4.33%) -1.134% 景氣正常 0% 8% 3.67% 景氣繁榮 30% 20% -5% -9.33% -1.866% 平均 4.33% -3%

投資組合的風險 利用共變異數與相關係數求出兩股票間的變異數與標準差 兩變數的變異數矩陣 將矩陣內所有的值加總即為投資組合A、B的變異數: 代表持有股票A的比重, 則為股票A持有比重的平方 當投資組合的共變異數為正的時候,將會增加投資組合報酬率的波動程度 當投資組合的共變異數為負的時候,將會降低投資組合報酬率的波動程度 股票A 股票B

投資組合變異數的計算 假設一個投資組合有股票A、B,持有比重各為25%、75%,標準差分別為0.2、0.081,股票A、B的相關係數為-0.617。請問此投資組合的變異數與標準差為多少?

兩個資產的效率投資組合 假設股票A與股票B的預期報酬率與標準差如下表: 試著計算各種投資比重的預期報酬率與標準差: 預期報酬率 標準差 26% 50% 股票B 6% 25% 投資比重 預期報酬率 標準差 (100%,0%) 26% 50% (80%,20%) 22% 40.3% (60%,40%) 18% 31.6% (40%,60%) 14% 25% (20%,80%) 10% 22.3% (0%,100%) 6%

兩種股票投資組合 的投資機會集合 將各種可能持有比重連結成一條平滑曲線 (1, 0) (0, 1) (0.2, 0.8) (0.8, 0.2) (0.4, 0.6) (0.6, 0.4) 15% 10% 5% 30% 25% 20% 40% 50% 0% 標準差 A 預 期 報 酬 率 MV 效率集合 無效率集合 B

兩種股票投資組合 的投資機會集合 當投資組合的持有比重分配落在點MV時,投資組合會有最小的標準差 曲線AB稱為投資機會集合(Opportunity Set) 如果投資人是傾向風險愛好者,那麼他的持有比重的選擇可能會往點A移動 如果投資人是傾向風險趨避者,那麼他的持有比重的選擇可能就會往點MV移動

兩種股票投資組合的投資機會集合 從點B開始至點MV是呈現向後彎的狀態 投資機會集合曲線與相關係數 當相關係數 的時候,機會集合曲線就會產生後彎現象,當 時則不會 當兩個股票完全正相關的時候,因為完全沒有分散風險,所以投資機會集合會呈現一條直線 投資機會集合曲線與相關係數 標準差 預 期 報 酬 率 0%

兩種股票投資組合 的投資機會集合 沒有任合理性的投資人會願意將持有比重分配在後彎那一段的投資集合線上 當持有比重為(0, 1)與(0.4, 0.6)的時候,投資組合面臨的風險是一樣的,但是持有比重(0.4, 0.6)的預期報酬率14%卻遠比點B的6%還要高 點MV到點A這段曲線又稱為效率前緣(Efficient Frontier)或效率集合(Efficient Set);點MV到點B這段曲線則稱為無效率集合 投資組合的效率前緣容易求出,但投資人該如何決定持有比重的分配才是重點,其與投資人對於風險的忍受程度以及預期的報酬率有關

多個資產的投資機會集合 多種股票所組成的投資組合,其投資機會集合可能如下: 當有多個股票的時候,投資機會集合變成一個區域 但效率前緣仍然只有點MV到點A這段曲線 任何在效率前緣以下的點,在相同風險下都會有比較低的預期報酬率 標準差 預 期 報 酬 率 MV B A X Z Y W C D

最佳投資組合 (The Optimal Portfolio) 投資人可能會同時持有一部份的風險投資商品以及無風險投資商品 此投資組合的預期報酬率 因為國庫券T的標準差為0%,所以共變異數也等於0 投資組合的變異數與標準差為: 持有比重 預期報酬率 標準差 股票A 40% 20% 30% 國庫券T 60% 6% 0%

最佳投資組合 這個投資組合的預期報酬率與標準差的關係如圖: 假設投資人原先只投資股票A共1,000元,他今天再以無風險利率6%借了200元繼續加碼投資股票A,也就是投資人總共投資股票A共1,200元,為線上的Y點。此時投資人的預期報酬率為 標準差 預期報酬率 20% 30% (0.4, 0.6) A (1.2, -0.2) X Y

最佳投資組合 也可以由一個無風險資產和許多有風險資產的投資組合來構成 點Y、Z各代表一組有風險資產的投資組合 點3可能為無風險資產與投資組合Z的組合,而點4則為借錢投資Z的組合 A B Ι (資本市場線) II Y 3 1 2 市場 投資組合 Z 4

最佳投資組合 在直線II上的任一點,都可以在直線I上找到同樣標準差但是預期報酬更高的投資組合

同質性預期 每位投資人會根據各種數據計算出他們的最佳投 資組合 假設市場上每一位投資人的最佳投資組合都擁有 一樣的預期報酬率、標準差、共變異數,這樣的 假設稱為同質性預期 當市場上所有的投資人有同質性預期的時,每位 投資人都會畫出一樣的風險資產效率前緣與直線I, 並找出投資組合Z 投資組合Z就稱為市場投資組合(Market Portfolio) 通過市場投資組合的切線我們就稱之為資本市場線 (CML)

個股與大盤的報酬率的關係 在四種發生機率相等的經濟情況下,大盤指數的預期報酬率以及盤內股票K的預期報酬率: 經濟情況 大盤指數 股票K 多頭市場 15% 30% 20% 空頭市場 -5% -10% -20%

個股與大盤的報酬率的關係 計算出大盤與股票K的預期報酬率為: 大盤在多頭市場的情況下的報酬率比空頭市場下還要高出20%[=15%-(-5%)] 股票K在多頭市場的報酬率比空頭市場下還要高出40%[=25%-(-15%)] 股票K的反應程度是大盤的2倍(=40%/20%) 經濟情況 大盤指數 股票K 多頭市場 15% 25%=(30%+20%)/2 空頭市場 -5% -15%=(-10%-20%)/2

股票K的特性線 將股票K與大盤報酬率的關係畫成下圖: 這條線我們稱為股票K的特性線(Characteristic Line) -5 -15 大盤報酬率(%) 股票K報酬率(%) 15 25 特性線 B A

β值 單一股票的β值是用來衡量其對於整個大盤波動的敏感程度 計算公式可以寫成: 其中 代表股票i報酬率與市場投資組合報酬率的共變異數,而 則代表市場投資組合的變異數 把市場投資組合所有個股的β值加權平均後,市場投資組合的β值會等於1

資本資產定價模型 任何資產的風險溢酬應該會等於其預期報酬率(R )減去無風險利率 ( ) 因為β值是衡量單一資產對於市場投資組合的敏感度,所以任何資產的風險溢酬也會等於其值乘以市場的風險溢酬 綜合上面的關係,我們可以推導出:

資本資產定價模型 由上式可以推得任何資產的預期報酬率會等於: 此式就稱為資本資產定價模型(Capital Asset Pricing Model,簡稱CAPM) 投資人對於任何資產的預期報酬率取決於兩個主要的因素:(1) 無風險利率;(2) 該資產的風險溢酬 該資產的風險溢酬又是由該資產的β值與市場風險溢酬決定 當β=0時,代表該資產沒有任何風險,此時預期報酬率就會等於無風險利率( ) 當β=1時,代表該資產的風險完全與市場風險相符,所以預期報酬率就會等於市場報酬率

資本資產定價模型 根據CAPM,我們可以畫出一條證券市場線(SML): 無風險利率為截距,市場風險溢酬為斜率 M 預期報酬率 β值 1 0.7

資本資產定價模型 證券市場線(SML)與資本市場線(CML)的差異: 證券市場線是以β值為X軸,但是資本市場線是以標準差為X軸 只有效率投資組合(Efficient Portfolio)才會落在CML上 E.g.假設股票A的β值為1.2,股票B的β值為0.8,無風險利率為6%,市場平均風險溢酬為9%,請計算股票A、股票B的預期報酬率為多少?

CAPM的應用—投資組合的β值 CAPM也適用於計算投資組合的預期報酬率 E.g.假設股票A的β值為1.2,股票B的β值為0.8,無風險利率為6%,市場平均風險溢酬為9%,投資人今天持有一個投資組合包含股票A與股票B,持有比重各半。此投資組合的預期報酬率為多少? 投資組合的β值為: 投資組合的預期報酬率為:

CAPM的應用—證券市場線 若股票落在證券市場線以下會發生什麼情形? 以股票A為例:股票A的β值為0.5,投資人可以持有50%的國庫券及50%市場投資組合來達到相同風險,但報酬率卻可以落在SML上 不會有人投資股票A,於是股票A的價格就會下跌,直到預期報酬率回到SML上 同理可以用無風險利率借50%的資金去投資150%的市場投資組合來取代股票B,股票B的股價仍會下跌 SML 預期報酬率 β值 1 0.5 1.5 A B M

CAPM的應用—資金機會成本 我們可以利用CAPM來計算出一個投資組合的預期報酬率,而這個預期報酬率就可以幫助我們估計資金的機會成本 E.g.假設麥格公司今天評估一個投資計畫的內部報酬率(IRR)為16%,目前國庫券利率為6%,而長期平均的市場風險溢酬為9%。若公司的投資計畫的風險略小於市場投資組合的風險,即β=0.9,請問公司應該進行此投資計畫嗎? 此投資計畫的資金機會成本為:  因為IRR > 14.1%,所以公司應該進行此投資計畫