第三讲 匀变速直线运动 学 科:物 理 主讲人:吴含章
1匀变速直线运动规律 速度公式: 位移公式: 推论公式: 平均速度:
上述各式,要注意用正、负号表示矢量的方向。一般情况下规定初速度 方向为正方向,a、 、s等矢量与正方向相同则为正,与正方向相反则为负。
利用匀变速直线运动规律求解运动学问题,在熟悉题意的基础上,首先要分清物体的运动过程及各过程的运动性质,要注意每一个过程加速度必须恒定。找出各过程的共同点及两过程转折点的速度、再根据已知量和待求量选择合适的规律、公式求解,尽管公式都是现成的,但选择最简单的公式却有很多技巧,解题中要注意一题多解,举一反三,以达到熟练运用运动学规律的目的。
2.1图像法 1、根据物理规律中各个物理量的函数关系,在直角坐标系上定性地或者定量地画出相应地函数图像。 2、根据图像的斜率、截距、与坐标轴所包围的面积,以及图像交点的坐标等的物理意义,进行分析、推理和计算。
【例1】一火车沿直线轨道从静止发出由A地驶向B地,并停止在B地。AB两地相距x,火车做加速运动时,其加速度最大为a1,做减速运动时,其加速度的绝对值最大为a2,由此可可以判断出该火车由A到B所需的最短时间为 。
【例2】两辆完全相同的汽车,沿水平直路一前一后匀速行驶,速度为v0,若前车突然以恒定的加速度刹车,在它刚停住时,后车以前车刹车时的加速度开始刹车。已知前车在刹车过程中所行的距离为x,若要保证两辆车在上述情况中不相碰,则两车在做匀速行驶时保持的距离至少为: A.x B.2x C.3x D.4x
习 题 1.A、B两汽车站相距60千米,从A站每间隔10分钟有一辆汽车匀速开向B站,车速大小为60千米每小时。若在A站正有汽车开出时,在B站有一辆汽车以同样大小的速度开向A站,问: ①为了在途中遇到从A站开出的车最多,B站的车至少应在A站第一辆车开出后多久出发? ②、在途中,从B站开出的车最多能遇到几辆从A站开出的车?
【例3】一只老鼠从老鼠洞沿直线爬出,已知爬出速度v的大小与距老鼠洞中心的距离x成反 比,当老鼠到达距老鼠洞中心距离x1=1m的A点时,速度大小为v1=20cm/x,问当老鼠到达距老鼠洞中心x2=2m的B点时,其速度大小v2为多少?老鼠从A点到达B点所用的时间t为多少?
2.2微元法 1、微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。 2、用该方法可以使一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,使所求的问题简单化。 3、在使用微元法处理问题时,需将其分解为众多微小的“元过程”,而且每个“元过程”所遵循的规律是相同的,这样,我们只需分析这些“元过程”,然后再将“元过程”进行必要的数学方法或物理思想处理,进而使问题求解。
2.3等效法 等效思维的实质是在效果相同的情况下,将较为复杂的实际问题变换为简单的熟悉问题,以便突出主要因素,抓住它的本质,找出其中规律。
2.4递推法 递推法是解决物体与物体发生多次作用后的情况. 即当问题中涉及相互联系的物体较多并且有规律时,应根据题目特点应用数学思想将所研究的问题归类,然后求出通式。 具体方法是先分析某一次作用的情况,得出结论。再根据多次作用的重复性和它们的共同点,把结论推广,然后结合数学知识求解。用递推法解题的关键是导出联系相邻两次作用的递推关系式。 密密麻麻密密麻麻密密麻麻密密麻麻密密麻麻
【例5】小球从高h0 = 180m处自由下落,着地后跳起又下落,每与地面相碰一次,速度减小 (n = 2),求小球从下落到停止经过的总时间为通过的总路程。(g取10m/s2)
2.5极限法 极限法是把某个物理量推向极端,即极大和极小或极左和极右,并依此做出科学的推理分析,从而给出判断或导出一般结论。 极限法在进行某些物理过程的分析时,具有独特作用,恰当应用极限法能提高解题效率,使问题化难为易,化繁为简,思路灵活,判断准确。
2.6对称法 由于物质世界存在某些对称性,使得物理学理论也具有相应的对称性,从而使对称现象普遍存在于各种物理现象和物理规律中。应用这种对称性它不仅能帮助我们认识和探索物质世界的某些基本规律,而且也能帮助我们去求解某些具体的物理问题,这种思维方法在物理学中称为对称法。
2.7自由弦运动的等时性及应用 如图所示,直径为的竖直圆环,可以证明:物体从静止开始,无摩擦地由圆环最高点沿不同的弦运动到圆周上或者从圆周上沿不同的弦运动到圆环最低点,所需的时间都相等,且等于沿竖直直径自由落体的时间。
【例9】 如图5一个质点自倾角为的斜面上方定点A,沿光滑斜槽从静止开始滑下,为了使质点在最短时间到达斜面,求斜槽与竖直方向的夹角应等于多少?
谢谢大家!