概率图模型 林琛 助理教授.

Slides:



Advertisements
Similar presentations
随机变量及其概率分布 第二章 离散型随机变量及其分布律 正态分布 连续型随机变量及其分布律 随机变量函数的分布.
Advertisements

一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
数据结构的引入. 通讯录管理 社团机构管理 校园导航管理 通讯录管理 社团机构管理 校园导航管理.
商管群科科主任 盧錦春 年 3 月份初階建置、 4 月份進階建置、 5 月份試賣與對外營業。
窦娥冤 关汉卿 感天动地 元·关汉卿.
知其不可而为之.
概率图模型 林琛 博士、副教授.
中国画家协会理事、安徽省美术家协会会员、 工艺美术师、黄山市邮协常务理事余承平主讲
5.5可行性分析 可行性分析的概念 策略可行性分析 操作可行性分析 回报可行性分析.
汉字的构造.
诵读欣赏 古代诗词三首.
“深入推进依法行政加快建设法治政府” -《法治政府建设实施纲要》解读
第六节 可降阶的二阶微分方程 一、 型的微分方程 二、 型的微分方程 三、 型的微分方程.
常用逻辑用语复习课 李娟.
第一章 行列式 第五节 Cramer定理 设含有n 个未知量的n个方程构成的线性方程组为 (Ⅰ) 由未知数的系数组成的n阶行列式
25.2 用列举法求概率(第3课时) 保靖民中:张 强.
摸球游戏: 盒子里装有黄球和白球,我和你们依次摸球,摸到球后放回去,摇一摇,继续摸。摸到黄球老师赢,摸到白球你们赢,赢者得福娃一个。
西师大版三年级数学下册 长方形面积的计算 象鼻中心校 张长生.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
余角、补角.
1.2 事件的频率与概率 一、事件的频率 二、概率的公理化体系 1.2 事件的频率与概率.
初中数学八年级下册 (苏科版) 10.4 探索三角形 相似的条件(2).
C++中的声音处理 在传统Turbo C环境中,如果想用C语言控制电脑发声,可以用Sound函数。在VC6.6环境中如果想控制电脑发声则采用Beep函数。原型为: Beep(频率,持续时间) , 单位毫秒 暂停程序执行使用Sleep函数 Sleep(持续时间), 单位毫秒 引用这两个函数时,必须包含头文件
贴近教学 服务师生 方便老师.
六年级 语文 下册 第四单元 指尖的世界.
3.解:连续掷同一枚硬币4次的基本事件总数为 ,
(浙教版)四年级品德与社会下册 共同生活的世界 第四单元 世界之窗 第二课时.
第三章 多维随机变量及其分布 §2 边缘分布 边缘分布函数 边缘分布律 边缘概率密度.
以ISI平台为例,为您演示一下如何在Endnote文献中查看该文献的References
计算机数学基础 主讲老师: 邓辉文.
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
What have we learned?.
动态规划(Dynamic Programming)
概 率 统 计 主讲教师 叶宏 山东大学数学院.
2.1.2 空间中直线与直线 之间的位置关系.
宁波市高校慕课联盟课程 与 进行交互 Linux 系统管理.
第4章 非线性规划 4.5 约束最优化方法 2019/4/6 山东大学 软件学院.
第一章 函数与极限.
习题 一、概率论 1.已知随机事件A,B,C满足 在下列三种情况下,计算 (1)A,B,C相互独立 (2)A,B独立,A,C互不相容
抽样和抽样分布 基本计算 Sampling & Sampling distribution
第二十二章 曲面积分 §1 第一型曲面积分 §2 第二型曲面积分 §3 高斯公式与斯托克斯公式.
线段的有关计算.
模型分类问题 Presented by 刘婷婷 苏琬琳.
概 率 统 计 主讲教师 叶宏 山东大学数学院.
5.2 常用统计分布 一、常见分布 二、概率分布的分位数 三、小结.
复习.
用计算器开方.
成绩是怎么算出来的? 16级第一学期半期考试成绩 班级 姓名 语文 数学 英语 政治 历史 地理 物理 化学 生物 总分 1 张三1 115
定理21.9(可满足性定理)设A是P(Y)的协调子集,则存在P(Y)的解释域U和项解释,使得赋值函数v(A){1}。
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
概 率 统 计 主讲教师 叶宏 山东大学数学院.
第三章 多维随机变量及其分布 第一节 二维随机变量 第二节 边缘分布 第三节 条件分布 第四节 相互独立的随机变量
魏新宇 MATLAB/Simulink 与控制系统仿真 魏新宇
第一部分:概率 产生随机样本:对分布采样 均匀分布 其他分布 伪随机数 很多统计软件包中都有此工具 如在Matlab中:rand
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
§5.2 抽样分布   确定统计量的分布——抽样分布,是数理统计的基本问题之一.采用求随机向量的函数的分布的方法可得到抽样分布.由于样本容量一般不止2或 3(甚至还可能是随机的),故计算往往很复杂,有时还需要特殊技巧或特殊工具.   由于正态总体是最常见的总体,故本节介绍的几个抽样分布均对正态总体而言.
Xián 伯 牙 绝 弦 安徽淮南市八公山区第二小学 陈燕朵.
第二节 函数的极限 一、函数极限的定义 二、函数极限的性质 三、小结 思考题.
难点:连续变量函数分布与二维连续变量分布
3-3 随机误差的正态分布 一、 频率分布 在相同条件下对某样品中镍的质量分数(%)进行重复测定,得到90个测定值如下:
第三章 从概率分布函数的抽样 (Sampling from Probability Distribution Functions)
《偏微分方程》第一章 绪论 第一章 绪论 1.1.
第3讲 概率论初步 3.1 概率 条件概率和加法公式 3.3 计数原则.
入侵检测技术 大连理工大学软件学院 毕玲.
§2 自由代数 定义19.7:设X是集合,G是一个T-代数,为X到G的函数,若对每个T-代数A和X到A的函数,都存在唯一的G到A的同态映射,使得=,则称G(更严格的说是(G,))是生成集X上的自由T-代数。X中的元素称为生成元。 A变, 变 变, 也变 对给定的 和A,是唯一的.
9.3多项式乘多项式.
Presentation transcript:

概率图模型 林琛 助理教授

引子 Siri: iphone 4S上应用的一项语音控制功能 Judea Pearl 生活大爆炸(5-14-0500) 一段对话 “Siri, how’s the weather tomorrow in London?” “Sunny and mild” “How about Shanghai?” Judea Pearl 贝叶斯网络的先驱 奠定不确定性和因果推理在计算机等多个学科中的地位

概率基础 世界上许多事情都具有不确定性。 概率论是研究处理这类现象的数学理论 用概率表示事件发生的可能性。例如,P(硬币正面朝上)=0.5。 可能发生多次(频率论) 可能只能发生一次(贝叶斯概率) 随机试验的所有可能结果组成该试验的样本空间 例如,掷硬币,抛之前无法预知哪一面朝上;赌马,理论上每匹马都有跑第一的可能,事先无法预料那匹马一定会赢。 http://www.xmu.edu.cn

课堂测试(1) 事件投1次硬币的样本空间是? 事件投2次硬币的样本空间是?

随机变量 随机变量是定义在样本空间上的函数,其所有可能取值的集合称为它的值域,也称状态空间。掷骰子试验,设X为“扔骰子实验的所有可能结果”,则X为一随机变量. 对单个随机变量X,可用概率函数P(X)来描述它的各个状态的概率 而对于多个随机变量X1,…,Xn,则可用 联合概率分布P(X1,…,Xn)来描述各变量所有可能状态组合的概率 联合分布刻画了变量之间的各种关系,包含了变量关系的所有信息 随机变量X1在另外一个随机变量X2各个状态下的发生概率为条件概率分布表示为P(X1| X2) 随机变量X1的各状态概率,与其他随机变量无关,叫做边际概率 我们首先讨论一下对系统建模的几个要素。 http://www.xmu.edu.cn

课堂测试(2) 设有3个装有黑白两色球的口袋,第一个口袋黑白球各半,第二个口袋黑白球比例为4:1,第三个则全是黑球。用随机变量X,Y,Z分别代表从这3个口袋随机抽出的球的颜色,w表示白,b表示黑。则联合概率分布P(X,Y,Z)如右所示: 计算P(X=w),P(X=w|Y=b,Z=w) X Y Z P(X,Y,Z) w b 0.1 0.4 加和为1,边际概率,条件概率怎么算? http://www.xmu.edu.cn

利用概率分布推理的例子 故事:Pearl教授家住洛杉矶,那里地震和盗窃时有发生。教授的家里装有警铃,地震和盗窃都有可能触发警铃。听到警铃后,两个邻居Mary和John可能会打电话给他。 问题: 一天,Pearl教授接到Mary的电话,说听到他家警铃响,Pearl教授想知道他家遭盗窃的概率是多大。 常用的解决此类问题的途径,即使用概率方法进行不确定性推理就是: 1) 把问题用一组随机变量X={X1,X2,…,Xn}来刻画; 2) 把关于问题的知识表示为一个联合概率分布P(X); 3) 按照概率论原则进行推理计算。

课堂测试(3) 假设刚才例子中的联合概率分布如下 要在一些随机变量之间进行概率推理,理论上只需要一个联合概率分布即可。

贝叶斯网络 Pearl提出了用如下方法构造一个有向图表示变量间的依赖和独立关系 1)把每个变量都表示为一个节点; 2)对于每个节点Xi,都从跟其直接相关的节点画一条有向边到Xi. 例如,上面的例子对应的有向图可表示为: 根据链规则 P(B,E,A,J,M) =P(B)P(E|B)P(A|B,E)P(J|B,E,A)P(M|B,E,A,J) (1) =P(B)P(E)P(A|B,E)P(J|A)P(M|A) (2) 图1 http://www.xmu.edu.cn

贝叶斯网络表示的依赖与条件独立 从图1中可以看出,变量A依赖于B和E,那么A具体是如何依赖于B和E的呢?条件概率分布P(A|B,E)定量的刻画了这个问题: 1) 盗窃和地震都发生时,警铃响的概率为P(A=y|B=y,E=y)=0.95 2) 只发生盗窃但没有发生地震时,警铃响的概率为P(A=y|B=n,E=y)=0.29 3) 所有其它情形 类似地,P(M|A)、P(J|A)定量刻画了M和J如何依赖于A . 变量B和E不依赖于其它变量,P(B)和P(E)给出它们的边缘分布 图1和这5个概率分布合在一起,就构成一个贝叶斯网,是对式2给出的联合分布的分解的直观表示. A依赖于B和E;M和J都依赖于A;而从B和E没有直接到M和J的有向边,表示给定A,这两组变量相互条件独立。 V-structure http://www.xmu.edu.cn

贝叶斯网络研究的主要内容 Inference(推理) 通过计算回答查询(query)的过程,简单的说,设计算法,从而可根据已有 变量的值计算某些变量发生的概率。例如, Pearl教授接到Mary的电话,说听到他家警铃响,Pearl教授想知道他家遭盗窃的概率是多大。 Learning(学习) 根据专家知识和已有的数据,构建当前概率分布对应的模型,揭示问题的结构,进而对问题的结构加以利用,降低推理的计算复杂度。 当前研究的主要是线性PSRs,如无特别说明,本文针对的是线性PSRs。 http://www.xmu.edu.cn