第4讲 充分条件和必要条件.

Slides:



Advertisements
Similar presentations
简单迭代法的概念与结论 简单迭代法又称逐次迭代法,基本思想是构造不动点 方程,以求得近似根。即由方程 f(x)=0 变换为 x=  (x), 然后建立迭代格式, 返回下一页 则称迭代格式 收敛, 否则称为发散 上一页.
Advertisements

南 通. 南通概述 南通,位于江苏省东部, 东抵黄海,南望长江。 “ 据江 海之会、扼南北之喉 ” ,隔江 与中国经济最发达的上海及 苏南地区相依,被誉为 “ 北上 海 ” 。 南通也是中国首批对 外开放的 14 个沿海城市之一 ,被称为 “ 中国近代第一城 ” 。 南通面临海外和内陆两大经 济辐射扇面,素有.
1 天天 5 蔬果 國立彰化特殊教育學校 延杰股份有限公司營養師:陳婷貽. 2 蔬果彩虹 579 蔬果彩虹 歲以內兒童,每天 攝取五份新鮮蔬菜水 果,其中應有三份蔬 菜兩份水果 蔬菜份數水果份數總份數 兒童 325 女性 437 男性 549.
高等学校英语应用能力考试 考务培训 兰州文理学院教务处 2014 年 12 月. 考务培训 21 日请监考人员上午 8:00 (下午 2:30 )到综合楼 205 教室集合,查看 监考安排,由考务负责人进行考务 培训。
語言與文化通識報告 - 台日年菜差異 - 指導老師 : 葉蓁蓁 小組 : 日本微旅行 組員 :4a21b032 吳采玲 4a21b037 沈立揚 4a 洪雅芳 4a 陳楚貽 4a 王巧稜.
均衡推进,确保质量 08学年第一学期教学工作会议 广州市培正中学
黑木耳.
投資權證13問 交易所宣導資料(104) 1.以大盤指數為標的之權證,和大盤指數的連動性,為什麼比和期交所期指的連動性差?
如何把作文写具体.
第一章 人口与环境 第一节 人口增长模式.
第一节 人口与人种 第一课时.
解读我党发展史 思索安惠美好明天 主讲人:王辰武.
专利技术交底书的撰写方法 ——公司知识产权讲座
第5课 长江和黄河.
2011级高考地理复习(第一轮) 第三篇 中国地理 第一章 中国地理概况 第五节 河流和湖泊.
銓敘部研究規劃自願退休公務人員月退休金起支年齡延後方案座談會
瓦罐湯 “瓦缸煨汤”是流行于南方民间的一种风味菜肴。它采用一种制特的大瓦缸,其缸底可以烧火,缸内置有铁架,厨师将装有汤的小瓦罐一层层地码入缸内的铁架上,然后点燃木炭,借用木炭火产生的高温将瓦罐内的汤煨熟。
1.數學的難題 如下圖所示,你知道表格中的問號應填入什麼數字嗎?
第九章 欧氏空间 §1 定义与基本性质 §2 标准正交基 §3 同构 §4 正交变换 §5 子空间 §6 对称矩阵的标准形
第九章 欧氏空间 §1 定义与基本性质 §6 对称矩阵的标准形 §2 标准正交基 §7 向量到子空间的 距离─最小二乘法 §3 同构
合肥学院外国语言系2012年度 学生工作表彰大会.
105年基北區高中職適性入學宣導 教育會考後相關作業說明
真题模拟 主讲:凌宇 时间:6月9日.
树立信心,沉着应战,吹响中考冲锋号 ——谈语文学科的复习备考及考试技巧.
请大家欣赏龙岩, 新罗区 上杭,武平, 连城,长汀, 永定,漳平 小吃和特产.
游 泳 理 论 课 位育中学 高蓉.
行政公文 纪 要 讲授人: 安学珍 铜仁职业技术学院.
二代健保補充保費 代扣項目說明 簡報.
1.某公司需购一台设备,有两个方案,假定公司要求的必要报酬率为10%,有关数据如下:
第4课 “千古一帝”秦始皇.
第一节 人口与人种 光山一中 屈应霞.
小寶寶家庭保健護理小常識 講師:郭洽利老師
第五章 二次型.
抚宁县第五中学 教学暨新课改推进工作会.
我为何为我?——那些历史并没有消失,它们就存在于我们心灵最隐秘的地方,时时在引导我们的行为准则,在操纵着我们的喜怒哀乐。
《社会体育指导员讲座》课程整体设计介绍 席永 副教授 2015 年 6 月
专项建设检查工作总结 本科试卷 毕业论文(设计) 合格课程 专项检查工作基本情况 专项建设的工作内容 专项建设检查工作情况
企业所得税几项热点难点 业务问题讲析 湛江市地税局税政科 钟胜强.
房地产开发企业 土地增值税清算 (基础篇).
班級老師:潘盈仁 班級:休閒三甲 學號:4A0B0124 學生:柯又瑄
告状 一位叫杨鲁的孩子,告他父亲杨庆的状。他极其认真地向父亲所在的工厂党委书记指控,说父亲不让儿子“游戏人间”,每天“画地为牢”,要儿子“咬文嚼字”,稍不满意,还要“入室操戈”。他声称父亲打他总是“重于泰山”,不象母亲打他“轻如鸿毛”。并且表示“庆父不死,鲁难不已”。
學校社工師服務與家訪技巧 三峽區駐區學校社工師 陳若喬.
第三部分 区域可持续发展 第二单元 区域可持续发展 第7课 资源跨区域调配. 第三部分 区域可持续发展 第二单元 区域可持续发展 第7课 资源跨区域调配.
透過教學鷹架引導 三年級學生形成科學議題 高雄市復興國小 李素貞 102年3月20日
第五章 病因病机.
主题七 关注三农,重视民生 .
第三章 生产费用的核算 第一节 材料费用的归集和分配 第二节 工资费用的归集和分配 第三节 辅助生产费用的归集和分配
第四单元 当代国际社会 第八课 走进国际社会.
昆明心桥心理健康研究所 心理健康工作者 钱锡安 讲座预约 个案咨询预约
第3课时 逻辑连结词和四种命题 要点·疑点·考点 课 前 热 身   能力·思维·方法   延伸·拓展 误 解 分 析.
命题及其关系 命题.
四种命题 班级:C274 指导教师:钟志勤 任课教师:颜小娟.
1、命题:可以判断真假的语句,可写成:若p则q。 2、四种命题及相互关系:
一、情境设置 思考: 下列语句的表述形式有什么特点? 你能判断它们的真假吗? (1)若直线a//b,则直线a和直线b无公共点;(2)2+4=7; (3)垂直于同一条直线的两个平面平行; (4)若x2=1,则x=1; (5)两个全等三角形的面积相等; (6)3能被2整除.
第一节 正名——文字学与汉字学 第二节 本学期讲授内容及安排 附录:参考书目 作业
第五章 定积分及其应用.
A B~A B
苏教版小学数学六年级(下册) 认识正比例的量 执教者:朱勤.
105年基北區高中職適性入學宣導 教育會考後相關作業說明
表達技巧.
幼儿心理学.
甲年基督聖體聖血節進堂詠 上主要以上等的麥麵養育選民, 用石縫中的野蜜飽飫他們。.
體育科教學軟件 乒乓球.
因式定理.
海水运动→→洋流 你知道吗 在十年前,日本的科学家曾经做过一个有趣的实验:在日本以东的洋面拨撒了大量的带有颜色的物质。
歡迎大家來到開心國小! 我們每個月舉辦一次慶生會, 所以現在要調查全班的生日。 1號: 9/19 9號: 3/17 2號: 9/5 10號: 5/12 3號: 1/8 11號: 7/25 4號:11/27 12號:10/4 5號: 8/31 13號: 9/5 6號:
6上 5 小數除法(二) 9.有A、B兩袋金幣,金幣的數量相同。 的金幣全部是真的,共重 。 中有一些金幣是假的,共重 。 A袋
小學常識六年級 知 識 產 權 知 多 少 樊佩芳老師.
10.4 圓之切線方程 附加例題 6 附加例題 7 © 文達出版 (香港 )有限公司.
函数与导数 临猗中学 陶建厂.
Presentation transcript:

第4讲 充分条件和必要条件

第4讲 充分条件和必要条件 学习要求: 1.了解命题的逆命题、否命题与逆否命题;会分析四种命题之间的相互关系;会利用互为逆否命题的两个命题之间的关系判别命题的真假. 2.理解必要条件、充分条件、充要条件的意义;学会判断必要条件、充分条件、充要条件的方法.

一、基础知识回顾与梳理 :

2、设条件p: ,试给出一个条件q,使得p分别是q的“充分不必要条件”、“必要不充分条件”、“充要条件”“既不充分也不必要条件”。

概念提炼: 1.命题的概念 (1)能够 的语句叫做命题,其中判断为真的语句叫做 ,判断为 假的语句叫做 . (1)能够 的语句叫做命题,其中判断为真的语句叫做 ,判断为 假的语句叫做 . (2)在两个命题中,如果一个命题的 是另一个命题的 , 我们称这两个命题为互逆命题. (3)在两个命题中,如果一个命题的条件和结论分别是另一个命题的 ,这样的两个命题称为互否命题. 判断真假 真命题 假命题 条件和结论 结论和条件 条件的否定和结论的否定 (4)在两个命题中,如果一个命题的条件和结论分别是另一个命题的 ,这样的两个命题称为逆否命题. (5)一般地,设“若p则q”为原命题,那么“若q则p”就叫做原命题 的 ;“若非p则非q”就叫做原命题的 ;“若非q则非 p”就叫做原命题的 . 结论的否定和条件的否定 逆命题 否命题 逆否命题

2.四种命题的相互关系 (1)两个命题互为逆否命题,它们有相同的真假性. (2)两个命题为互逆命题或互否命题,它们的真假性没有关系.

3.充分条件和必要条件 一般地,如果p⇒q,那么称p是q的 条件,同时称q是p的 条 件,如果p⇒q,且q⇒p,那么称p是q的 条件,简称p是q的 条件,记作p q;如果p⇒q,且q p,那么称p是q的 条件;如果pD q;且q⇒p,那么称p是q的 条 件;如果p q,且q p,那么称p是q的 条件. 充分 必要 充分必要 充要 ⇔ 充分不必要 必要不充分 既不充分又不必要

答案:充分不必要;必要不充分;_充要_;既不充分也不必要。

例1、已知命题“若函数f(x)= -mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是________.(填序号) ②逆命题“若m≤1,则函数f(x)= -mx在(0,+∞)上是增函数”是假命题; ③逆否命题“若m>1,则函数f(x)= -mx在(0,+∞)上是减函数”是真命题; ④逆否命题“若m>1,则函数f(x)= -mx在(0,+∞)上不是增函数”是真命题.

【规律方法总结】 1.对命题真假的判断,真命题要加以论证,假命题要举出反例,这是最基 本的数学思维方式.在判断命题真假的过程中,要注意简单命题与复合命题 之间的真假关系,要注意命题四种形式之间的真假关系. 2.在充分条件、必要条件和充要条件的判断过程中,可利用图示这种数形 结合的思想方法;在证明充要条件时,首先要弄清充分性和必要性. 3.特殊情况下如果命题以p:x∈A,q:x∈B的形式出现,则有:(1) 若A⊆B,则p是q的充分条件;(2)若B⊆A,则p是q的必要条件;(3)若A=B,则p是q的充要条件. 4.反证法是一种重要的间接证法,一般在命题结论涉及“无限”的形式、“否定” 的形式或“至多”、“至少”的形式时,可考虑采用反证法.反证法在很大程度上就 是证明原命题的逆否命题,反证法的基本步骤是:(1)否定命题的结论(即命题的否定,要注意命题的否定和否命题的区别);(2)通过逻辑推理导出矛盾(可以与已知矛盾、可以与公理和定义矛盾等等),从而说明原命题是正确的.

谢谢!!