高二数学 选修2-3 2.2.3独立重复试验与二项分布.

Slides:



Advertisements
Similar presentations
1 §2.2 离 散 型 随 机 变 量 §2.1 随 机 变 量 的 概 念 §2.3 超几何分布 · 二项分布 · 泊松分布 1. “0-1” 分布 ( 两点分布 ) 3. 二项分布 4. Poisson 分布 2. 超几何分布 n →∞ , N→∞ , (x = 0, 1, 2, , n) (x.
Advertisements

小结与复习( 4 ). 1 、内容小结 互斥事件互斥事件 不对立不对立 特点特点 ⑴ A 、 B 不能同时发生, A 发生必 然 B 不发生。 ⑵事件 A+B 是随机事件 概率概率 ,又若 A 1 , A 2 , … , A n 彼此互斥,则 对立对立 特点特点 ⑴ A 、 B 不能同时发生,但必有一.
黄山市徽州一中数学教研组 毕林裕 凌荣寿 1 名数学家 =10 个师 1943 年, 在大西洋上英美运输船队常常受到德国潜艇的 袭击, 当时, 英美两国限于实力, 无力增派更多的护航舰, 一时 间, 德军的潜艇战搞得盟军焦头烂额. 为此, 有位美国海军将领专门去请教了几位数学家, 数学 家们运用概率论分析后发现,
随机变量及其概率分布 第二章 离散型随机变量及其分布律 正态分布 连续型随机变量及其分布律 随机变量函数的分布.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第二节 换元积分法 一、第一类换元积分 法(凑微分法) 二、第二类换元积分法. 问题 解决方法 利用复合函数,设置中间变量. 过程令 一、第一类换元积分法(凑微分法)
高二数学 选修 条件概率(一).
初中数学 九年级(上册) 4.2 等可能条件下的概率(一)(2).
复习: :对任意的x∈A,都有x∈B。 集合A与集合B间的关系 A(B) A B :存在x0∈A,但x0∈B。 A B A B.
第三章 概率 单元复习 第一课时.
§5.2 中心极限定理 定理3(同分布中心极限定理)设随机变量X1, X2, …, Xn, …相互独立,服从相同分布,且有有限的数学期望和方差,即: E(Xk) =,D(Xk) =2,k = 1, 2, … 则随机变量 的分布函数Fn(x)满足: 对任意的x,有.
专题1: 概率与统计解答题的解法.
学案5 离散型随机变量及其分布列.
量 及 变 其 机 分 随 布 第 章 二.
概率论与数理统计 2.2 离散型随机变量及其分布.
§2.2 离散型随机变量及其分布 离散型随机变量的概念 定义 若随机变量 的可能取值是有限多个或无穷可列多个,则称 为离散型随机变量.
第五章 二次型. 第五章 二次型 知识点1---二次型及其矩阵表示 二次型的基本概念 1. 线性变换与合同矩阵 2.
概率论与数理统计 课件制作:应用数学系 概率统计课程组.
3.1.3概率的基本性质.
3.1.3 概率的基本性质 事件 的关系 和运算 概率的 几个基 本性质 南海中学分校高一备课组.
3.1.3 概率的基本性质.
10.2 立方根.
概率相关概念.
6.6 单侧置信限 1、问题的引入 2、基本概念 3、典型例题 4、小结.
第二节 离散型随机变量 及其分布律 一、离散型随机变量的分布律 二、常见离散型随机变量的概率分布 三、小结.
第二章 随机变量及其分布 关键词: 随机变量 概率分布函数 离散型随机变量 连续型随机变量 随机变量的函数.
条件概率 Conditional Probability
高二数学 选修 离散型随机变量 安阳市实验中学 李志敏.
主要内容 § 3.1 多维随机变量及联合分布 联合分布函里数 联合分布律 联合概率密度 § 3.2 二维随机变量的边缘分布
随机变量及其 概率分布.
余角、补角.
1.2 事件的频率与概率 一、事件的频率 二、概率的公理化体系 1.2 事件的频率与概率.
阅读p48等比数列 等比数列 ——乌海市第十中学高二数学组.
3.解:连续掷同一枚硬币4次的基本事件总数为 ,
第三章 多维随机变量及其分布 §2 边缘分布 边缘分布函数 边缘分布律 边缘概率密度.
例1 :甲击中的环数; X :乙击中的环数; Y 平较高? 试问哪一个人的射击水 : 的射击水平由下表给出 甲、乙两人射击,他们
概率论 Probability.
第二部分 免疫系统与免疫活性分子 第二章 免疫系统 第三章 免疫球蛋白 第二 部分 第五章 细胞因子 第四章 补体系统.
北京师范大学珠海分校 国际特许经营学院与不动产学院 学年第二学期 欧阳顺湘
第二章 随机变量及其分布 §1 随机变量 §2 离散型随机变量及其分布 §3 随机变量的分布函数 §4 连续型随机变量及其概率密度
连续型随机变量及其概率密度 一、概率密度的概念与性质 二、常见连续型随机变量的分布 三、小结.
第七章 参数估计 7.3 参数的区间估计.
若2002年我国国民生产总值为 亿元,如果 ,那么经过多少年国民生产总值 每年平均增长 是2002年时的2倍? 解:设经过 年国民生产总值为2002年时的2倍, 根据题意有 , 即.
习题 一、概率论 1.已知随机事件A,B,C满足 在下列三种情况下,计算 (1)A,B,C相互独立 (2)A,B独立,A,C互不相容
离散型随机变量.
概 率 统 计 主讲教师 叶宏 山东大学数学院.
数列.
实数与向量的积.
概 率 统 计 主讲教师 叶宏 山东大学数学院.
5.2 常用统计分布 一、常见分布 二、概率分布的分位数 三、小结.
在第一章中,我们介绍了条件概率的概念 . 在事件B发生的条件下事件A发生的条件概率 推广到随机变量
用计算器开方.
课件制作:淮北矿业集团公司中学纪迎春 10.7相互独立事件同时发生的概率 授课教师:纪迎春.
第三章 多元随机变量及其分布 关键词:二元随机变量 联合分布 边际分布 条件分布 随机变量的独立性 随机变量函数的分布.
第二章 随机变量及其分布 关键词: 随机变量 概率分布函数 离散型随机变量 连续型随机变量 随机变量的函数.
概 率 统 计 主讲教师 叶宏 山东大学数学院.
Ch5 一维随机变量.
第四节 随机变量函数的概率分布 X 是分布已知的随机变量,g ( · ) 是一个已知 的连续函数,如何求随机变量 Y =g(X ) 的分布?
第一部分:概率 产生随机样本:对分布采样 均匀分布 其他分布 伪随机数 很多统计软件包中都有此工具 如在Matlab中:rand
§5.2 抽样分布   确定统计量的分布——抽样分布,是数理统计的基本问题之一.采用求随机向量的函数的分布的方法可得到抽样分布.由于样本容量一般不止2或 3(甚至还可能是随机的),故计算往往很复杂,有时还需要特殊技巧或特殊工具.   由于正态总体是最常见的总体,故本节介绍的几个抽样分布均对正态总体而言.
第 四 章 大 数 定 理 与 中 心 极 限 定 理.
高中数学选修 导数的计算.
第二节 函数的极限 一、函数极限的定义 二、函数极限的性质 三、小结 思考题.
定义 设连续型随机变量 概率密度为 分布函数是 特别地, 其概率密度为 一、正态分布的相关内容:.
难点:连续变量函数分布与二维连续变量分布
用列举法求概率 (第二课时).
任选四个不同的数字,组成一个最大的数和一个最小的数。用最大的数减去最小的数。用所得结果的四位数重复上述过程,最多七步,必得6174
笛卡儿说:“数学是知识的工具,亦是其它知识工具的泉源。所有研究顺序和度量的科学均和数学有关。”
§4.1数学期望.
第3讲 概率论初步 3.1 概率 条件概率和加法公式 3.3 计数原则.
Presentation transcript:

高二数学 选修2-3 2.2.3独立重复试验与二项分布

复习引入

③每次试验只有两种可能的结果:“成功”或“失败”。 ④每次出现“成功”的概率p相同,“失败“的概率也相同,为1-p。 ①包含了n个相同的试验。 ②每次试验相互独立。 ③每次试验只有两种可能的结果:“成功”或“失败”。 ④每次出现“成功”的概率p相同,“失败“的概率也相同,为1-p。 ⑤试验”成功”或“失败”可以计数,即试验结果对应于一个离散型随机变量。 我们把这样的试验叫做独立重复试验。即贝努力试验。

基本概念 独立重复试验的特点: 1)每次试验只有两种结果,要么发生,要么不发生; 2)任何一次试验中,A事件发生的概率相同,即相互独立,互不影响试验的结果。

探究 投掷一枚图钉,设针尖向上的概率为p,则针尖向下的概率为q=1-p.连续掷一枚图钉3次,仅出现1次针尖向上的概率是多少? 连续掷一枚图钉3次,就是做3次独立重复试验。用 表示第i次掷得针尖向上的事件,用 表示“仅出现一次针尖向上”的事件,则 由于事件 彼此互斥,由概率加法公式得 所以,连续掷一枚图钉3次,仅出现1次针尖向上的概率是

思考? 上面我们利用掷1次图钉,针尖向上的概率为p,求出了连续掷3次图钉,仅出现次1针尖向上的概率。类似地,连续掷3次图钉,出现 次针尖向上的概率是多少?你能发现其中的规律吗? 仔细观察上述等式,可以发现

基本概念 2、二项分布: 一般地,在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为 此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率。

深化认识: 二项分布是一种概率模型,有着十分广泛的应用。用以解决独立重复试验中的概率问题.比如下列问题中的随机变量ξ都可以看作是服从二项分布的: n次独立射击,每次命中率相同,ξ为命中次数。 一枚硬币掷n次,ξ为正面出现的次数。 掷n个相同的骰子,ξ为一点出现的次数。 n个新生婴儿,ξ为男婴的个数。 女性患色盲的概率为0.25%,ξ为任取n个女人中患色盲的人数。

例1 设一射手平均每射击10次中靶4次,求在五次射击中①击中一次,②第二次击中,③击中两次,④第二、三两次击中,⑤至少击中一次的概率. 由题设,此射手射击1次,中靶的概率为0.4. ① n=5,k=1,应用公式得 ② 事件“第二次击中”表示第一、三、四、五次击中或击不中都可,它不同于“击中一次”,也不同于“第二次击中,其他各次都不中”,不能用公式.它的概率就是0.4. ③n=5,k=2,

例1 设一射手平均每射击10次中靶4次,求在五次射击中①击中一次,②第二次击中,③击中两次,④第二、三两次击中,⑤至少击中一次的概率. ④“第二、三两次击中”表示第一次、第四次及第五次可中可不中,所以概率为0.4×0.4=0.16. ⑤设“至少击中一次”为事件B,则B包括“击中一次”,“击中两次”,“击中三次”,“击中四次”,“击中五次”,所以概率为 P(B)=P(1)+P(2)+P(3)+P(4)+P(5)   =0.2592+0.3456+0.2304+0.0768+0.01024 =0.92224. 1-P(0)

例2 某射手每次射击击中目标的概率是0.8,求这名射手在10次射击中, (1)恰有8次击中目标的概率; (2)至少有8次击中目标的概率。(结果保留两位有效数字) 解:设X为击中目标的次数,则X~B(10,0.8) (1)在10次射击中,恰有8次击中目标的概率为 (2)在10次射击中,至少有8次击中目标的概率为

例3.设3次独立重复试验中,事件A发生的概率相等,若已知A至少发生一次的概率等于19/27,求事件A在一次试验中发生的概率。

练习 1.有10门炮同时各向目标各发一枚炮弹,如果每门炮的命中率都是0.1,则目标被击中的概率约是( ) A 0.55 B 0.45 C 0.75 D 0.65 D

2.一射手对同一目标独立地进行4次射击,已知至少命中一次的概率为 ,则此射手射击一次的 命中率是( ) A B C D B

3.甲、乙两队参加乒乓球团体比赛,甲队与乙队实力之比为3:2,若比赛时均能正常发挥技术水平,则在5局3胜制中,打完4局才能取胜的概率为( ) A B C D A

4.一批产品共有100个,次品率为 3% ,从中有放回抽取3个恰有1个次品的概率是( ) A B C D A

例5.有10道单项选择题,每题有4个选支,某人随机选定每题中其中一个答案,求答对多少题的概率最大?并求出此种情况下概率的大小.