4.8 球蛋白的折叠依赖于各种相互作用 A. 疏水相互作用是蛋白质折叠的主要驱动力 B. 氢键和范德华力也是稳定球蛋白的力

Slides:



Advertisements
Similar presentations
蛋白质的一级结构与功能的关系 蛋白质的空间结构与功能的关系 1. 蛋白质的一级结构与其构象及功能的关系 2. 蛋白质空间橡象与功能活性的关系.
Advertisements

第一章 生命的物质基础 生物体中的有机化合物 上南中学 张正国. 胰岛素 C 3032 H 4816 O 872 N 780 S 8 F e 4 血红蛋白 C 1642 H 2652 O 492 N 420 S 12 牛 奶 乳蛋白 C 6 H.
第四节 RNA 的空间结构与功能. RNA 的种类和功能 核糖体 RNA ( rRNA ):核蛋白体组成成分 转移 RNA ( tRNA ):转运氨基酸 信使 RNA ( mRNA ):蛋白质合成模板 不均一核 RNA ( hnRNA ):成熟 mRNA 的前体 小核 RNA ( snRNA ):
植物生理 植物细胞生理基础 同工酶. 学习目标 Click to add title in here Click to add title n here  掌握同工酶的概念。  了解同工酶的意义。
Biochemistry and Molecular Biology
生物化学 Biochemistry 生物化学与分子生物学教研室 吴耀生 教授
生物化学 Biochemistry.
04蛋白质 大头婴儿.
1.5 电泳 A. SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)(P298)
氨基酸脱水缩合过程中的相关计算 广东省德庆县香山中学 伍群艳 H O C H COOH R2 N NH2 C C 肽键 R1 H2O.
第二章 蛋白质的结构与功能.
第六章 蛋白质的结构和功能.
Welcome to Biochemistry 张英 Tel:
第三节 蛋白质的 分子结构.
第五章 蛋白质的三维结构.
2 蛋白质的结构与功能.
The Molecular Structure of Protein
蛋白质的结构 Structure of Proteins
1.一 级 结 构( 线 性 结 构) 蛋 白 质 的 一 级 结 构 (primary structure) 指 它 的 氨 基 酸 序 列 。 首 N 端( “H”) 末 C 端(“OH”) 其 中 的 氨 基 酸 称 氨 基 酸.
第十一章 蛋白质化学 第一节 蛋白质的生物学意义及其组成 第二节 氨基酸化学 第三节 氨基酸的理化性质 第四节 氨基酸的分离和鉴定
蛋白质化学 蛋白质的概念 蛋白质(Protein)是由许多不同的氨基酸,按照一定的顺序,通过肽键连接而成的一条或多条肽链构成的生物大分子。
Structure and Function of Biomacromolecule
蛋白质结构的层次 二级结构:α螺旋,β折叠等 超二级结构 结构域(domain) 三级结构:所有原子空间位置 四级结构:多亚基蛋白
五、作用于神经系统的受体拮抗剂 兴奋性氨基酸(EAA)受体拮抗剂 抑制性氨基酸受体受体拮抗剂 神经肽Y受体拮抗剂
绪论   生物化学(Biochemistry)是研究生命化学的科学,它在分子水平探讨生命的本质,即研究生物体的分子结构与功能、物质代谢与调节及其在生命活动中的作用。 生物化学是医学生必修的基础医学课程,为学习其它基础医学和临床医学课程、在分子水平上认识病因和发病机理、诊断和防止疾病奠定扎实的基础。当今生物化学越来越多的成为生命科学的共同语言,它已成为生命科学领域的前沿学科。
第十二章 氨基酸、蛋白质、核酸 第一节 氨基酸 第二节 肽 第三节 蛋白质 第四节 核酸.
蛋白质工程的崛起.
第七节 维生素与辅因子.
生命的物质基础.
必修二 遗传与进化 第三章 基因的本质 第二节 DNA分子的结构 巢湖市 和县一中 张勇.
C 1.关于生物体内的遗传物质 下列说法正确的是( ) A.细菌的遗传物质主要是DNA B.病毒的遗传物质主要是RNA
第4章 基因的表达 第1节 基因指导蛋白质的合成.
基因的表达 凌通课件.
有机化学 主讲教师 霍文兰 教 材 曾昭琼 主编.
(四)蛋白质的二级结构   蛋白质的二级结构(secondary structure)指肽链主链不同区段通过自身的相互作用,形成氢键,沿某一主轴盘旋折叠而形成的局部空间结构,是蛋白质结构的构象单元.主要有以下类型: (1) α-螺旋(α-helix) (2) β-折叠(β-pleated sheet)
第六章 蛋白质功能与进化 蛋白质分子具有多样的生物学功能,需要一定的 化学结构,还需要一定的空间构象
生物化学课件 (供临床医学专业使用) 张丕显.
Structure and Function of Protein
第三章 蛋白质的结构与功能.
第12章 蛋白质化学 生化教研室 夏花英 8403 课程代码:22680b57e1.
蛋白质结构分析及三维可视化 以镰刀型红细胞贫血症为例
第一节 蛋白质的分子组成 元素:C、H、O、N、S P、Fe、Cu、Zn、I等。 蛋白质含氮量:平均为16%。 可用于蛋白质定量。
Structure and Function of Protein
第三节 Gas Transport in the blood 气体在血液中的运输
三、价层电子对互斥理论 基本要点: ABn分子或离子的几何构型取决于与中心A原子的价层电子对数目。 价层电子对=σ键电子对+孤对电子对
氨基酸等电点的计算和应用 郑芳芳.
第8章 遗传密码 8.1 遗传密码的基本特性.
第8章 静电场 图为1930年E.O.劳伦斯制成的世界上第一台回旋加速器.
2.1.2 空间中直线与直线 之间的位置关系.
第二节 免疫球蛋白的类型 双重特性: 抗体活性 免疫原性(抗原物质).
实验 二、配合平衡的移动 Cu 2+ + NH3 Cu(NH3)4 HCl Na2S Zn EDTA NH3 深蓝色消失
问1:四大基本反应类型有哪些?定义? 问2:你能分别举两例吗? 问3:你能说说四大基本反应中,反应物和生成物的物质类别吗?
第二节 DNA分子的结构.
第二章 细胞的分子基础 蛋白质、糖类、脂类、核酸 生物大分子 (biological macromolecules) 蛋白质、核酸
超越自然还是带来毁灭 “人造生命”令全世界不安
Carbohydrate Metabolism
正切函数的图象和性质 周期函数定义: 一般地,对于函数 (x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有
第十一章 配合物结构 §11.1 配合物的空间构型 §11.2 配合物的化学键理论.
第四章 缺 氧 概念:组织得不到氧气,或不能充分 利用氧气时,组织的代谢、功 能,甚至形态结构都可能发生 异常变化,这一病理过程称为 缺氧。
有关“ATP结构” 的会考复习.
光合作用的过程 主讲:尹冬静.
第五节 缓冲溶液pH值的计算 两种物质的性质 浓度 pH值 共轭酸碱对间的质子传递平衡 可用通式表示如下: HB+H2O ⇌ H3O++B-
第18 讲 配合物:晶体场理论.
温州中学选修课程《有机化学知识拓展》 酯化反应 温州中学 曾小巍.
基因信息的传递.
第三节 转录后修饰.
细胞分裂 有丝分裂.
第十九章 氨基酸 蛋白质 核酸.
生物化学 绪论.
讨论:利用已经灭绝的生物DNA分子,真的能够使灭绝的生物复活吗?
Presentation transcript:

4.8 球蛋白的折叠依赖于各种相互作用 A. 疏水相互作用是蛋白质折叠的主要驱动力 B. 氢键和范德华力也是稳定球蛋白的力 蛋白质中的疏水基团彼此靠近、聚集以避开水的现象称之疏水相互作用或疏水效应。 B. 氢键和范德华力也是稳定球蛋白的力 除了稳定-螺旋和-折叠结构的氢键以外,在多肽链骨架和水之间,多肽链骨架和极性侧链之间,两个极性侧链之间以及极性侧链和水之间也可以形成氢键。大多数氢键都是N-H……O类型的。 范德华力包括吸引力和斥力两种相互作用,范德华力只有当两个非极性残基之间处于一定距离时才能达到最大。 C. 共价交联和离子相互作用有时有助于球蛋白的稳定 共价交联,例如二硫键也有助于某些球蛋白的天然构象的稳定。带有相反电荷的侧链之间的离子相互作用也能帮助稳定球蛋白,虽然这种作用很弱。

稳定蛋白质三级结构的主要作用力 金属离子配位作用 疏水 相互作用 静电相互作用 折叠结构 链间氫健 二硫健 侧链之间氫健 螺旋结构 链内氫健

4.9 变性剂可引起蛋白质去折叠 环境的变化或是化学处理都会引起蛋白质天然构象的破坏,并伴随着生物活性的丧失,这一过程称之蛋白质变性。 天然蛋白 天然蛋白 天然蛋白 去污剂 尿素 变性剂 尿素 变性蛋白 变性蛋白 盐酸胍

核糖核酸酶A变性和复性 核糖核酸酶A变性,酶的三级结构和活性完全丧失,生成含有8个巯基的多肽链。 加脲和巯基乙醇 去除脲和巯基乙醇,又恢复到天然状态

Anfinsen等人用含有2-巯基乙醇的8M脲的变性剂使核糖核酸酶A(Rnase A)变性,导致酶的三级结构和催化活性完全丧失,生成含有8个巯基的多肽链。 如果将还原剂和脲同时都除去,并且稀释还原的蛋白和将它于生理pH条件下暴露在空气中,Rnase A会自发地获得它的天然构象,一套正确的二硫键和充分的酶活性。实验表明正确的二硫键只有当蛋白质折叠成它的天然构象后才能形成。如果向含有拼凑的不正确二硫键的失活形式的蛋白质溶液中加入少量的还原剂,然后缓慢加热,也可以复性。

疯牛病是由于蛋白变性引起的 一种名叫Prion(朊蛋白 )的小蛋白质(28KD)已经被证实是疯牛病以及其它相关疾病,如羊的搔痒症以及人类的海绵状脑病的致病介质。 Prions是在神经组织的细胞膜上发现的一种糖蛋白。当prion蛋白的正常构形(图a)变性折叠成非正常的构形(图b)时,疾病就发生了。 羊搔痒症大家都知道,但还从未发现跨物种的传播。但疯牛病就是爆发了,而起因可能是饲料里的羊肉粉末。如果吃了疯牛病发作的牲畜的肉,则可能引发人类的海绵状脑病。正常的Prion蛋白含有大量的α螺旋,而病变的蛋白却含有更多的β折叠。这些β折叠在蛋白质间相互作用,形成不溶的凝块。摄入的异常prion蛋白利用免疫系统的巨噬细胞在体内运输并最终到达神经组织,然后一直传到脑部。

正常的Prion蛋白含有大量的α螺旋 病变的Prion蛋白含有更多的β折叠

4.10 球蛋白还存在着其它一些结构 A.非重复的环结构 β转角

B. 超二级结构 超二级结构也称之基元,是二级结构的组合结构。这类结构存在于大量的各种不同的蛋白质结构中。超二级结构可能具有一种特定的功能或是作为大的功能单位结构域的一部分。 螺旋-环-螺旋 基元 发卡 希腊钥匙

结构域 结构域一般由几个超二级结构单位组成的。结构域的大小变化很大,范围从25到300个氨基酸残基,平均约为100个残基。 迂回 结构域 在三级结构内独立折叠的单位称之结构域。一个典型的结构域都具有一种特殊的功能,例如可以结合小分子等。 结构域一般由几个超二级结构单位组成的。结构域的大小变化很大,范围从25到300个氨基酸残基,平均约为100个残基。 右图a为迂回含有通过发夹环连接的反平行链。图b是一种/式的折叠桶,它是由重复的单位组成的,折叠桶的核心通常都是疏水结合部位或反应部位。 /折叠桶

4.11 具有四级结构的蛋白质是球状亚基的组装体 4.11.1 血红蛋白是个四聚体蛋白 Max Perutz经过二十多年的努力通过X-射线晶体图确定了马血红蛋白的结构。成年人的血红蛋白是一个由两个亚基和两个亚基两种类型亚基组成的四聚体。 和都很类似于肌红蛋白,只是肽链稍微短一点。和隔着一个空腔彼此相向(下图)。 每个亚基是由141个氨基酸残基组成,而每个亚基有146个氨基酸残基。无论是还是亚基,它们的三级结构几乎与肌红蛋白相同。 血红蛋白是的二聚体,因为和相互作用比与,和之间的相互作用强得多。

氧与血红蛋白结合的同促效应 血红蛋白存在两种构象:T态(紧张态)和R态(松弛态), T态和R态常用来由于配体结合引起的两种可互换状态。在本节在配体指的是氧,T态指的是对氧亲和力低的状态,而R态指的是对氧亲和力高的状态。 当一个与血红蛋白中的一个O2分子亚基结合会增加其他未结合O2的亚基对O2的亲和力。这种效应称为正协同性同促效应,称为正同促效应物。 氧与血红蛋白结合的模式如右图所示。

4. 11.2 血红蛋白和肌红蛋白的氧合曲线不同 血红蛋白氧合曲线为 S 形 肌红蛋白氧合曲线为双曲线形 组织 肺 血红蛋白 血红蛋白

血红蛋白和肌红蛋白都能结合氧,氧都是结合在分子中的血红素辅基上。 然而血红蛋白是个四聚体分子,可以转运氧,其氧合曲线是 S 形的;肌红蛋白是个单体,只贮存氧,并且可以使氧在肌肉内很容易地扩散,其氧合曲线是双曲线形的。 肌红蛋白和血红蛋白的生理功能依赖于与辅基可逆地结合氧,结合氧的情况可以通过氧结合曲线看出。

2,3 BPG的作用 2,3 BPG是血红蛋白的别构效应剂,一分子血红蛋白只有一分子2,3 BPG,位于由四个亚基缔合形成的中央孔穴内。 2,3 BPG将两个链交联在一起,有助于去氧血红蛋白的构象,促进氧的释放。

2,3BPG 的存在,可使氧与全血中成熟的血红蛋白结合的P50大约提高到26torr。 2,3-二磷酸-D-甘油酸(2,3BPG)是红细胞内血红蛋白的别构效应剂。 2,3BPG 的存在,可使氧与全血中成熟的血红蛋白结合的P50大约提高到26torr。 换言之,红细胞中的2,3BPG实质上是降低了脱氧血红蛋白对氧的亲和性。 在红细胞中,2,3BPG与血红蛋白的浓度几乎是等摩尔的。

2,3-二磷酸-D-甘油酸(2,3 BPG)对血红蛋白氧合曲线的影响 组织中 pO2 肺中pO2 (高原4500米) 肺中pO2 (海平面) 2,3-二磷酸-D-甘油酸(2,3 BPG)对血红蛋白氧合曲线的影响 当人从海平面上到4500米高原后两天内, 2,3 BPG的浓度有原来的5mM增加到8mM,结果对组织的供氧量又恢复到接近正常水平(0.38)。 如果BPG仍维持5mM水平,对组织的供氧量将减少四分之一,为0。30。 氧饱和度

波耳效应(Bohr effect) pH对氧饱和曲线的影响

氧结合血红蛋白的另外调节作用涉及到二氧化碳和质子,二者都是有氧代谢的产物。CO2能降低血红蛋白对氧的亲和性。在红细胞内碳酸酐酶催化CO2生成一个碳酸(H2CO3),碳酸容易解离形成碳酸氢根离子和一个质子: CO2+H2O = H++HCO3- 结果使得细胞内的pH降低。低pH 导致血红蛋白中的几个基团的质子化,质子化的基团可以形成有助于脱氧构象稳定的离子对。 CO2浓度增加以及相应的pH降低使得血红蛋白的P50升高,这一现象称之波耳效应(Bohr effect),它提高了氧转运系统的效率。在肺部,CO2水平低,氧很容易被血红蛋白占有,同时释放出质子;而在代谢的组织中,CO2水平相对来说比较高,pH较低,O2容易从氧合血红蛋白中卸载。

4.11.4镰刀形细胞贫血病是一种分子病 在正常细胞之中存在着许多异常的镰刀形的细胞,这种非正常血液病称之镰刀形细胞贫血病。镰刀形细胞不能象正常细胞那样通过毛细血管。因此血液循环被破坏,还可能发生严重的组织损伤。镰刀形细胞易破裂,导致红细胞的减少。

镰刀形细胞贫血病是血红蛋白内氨基酸替换的结果。这是由于镰刀形贫血病中的血红蛋白( Hb S)与正常的成熟的血红蛋白( Hb A )的电泳行为不同,Hb A 比Hb S泳动得快,表明Hb S比Hb A带有的正电荷多。 后来序列分析发现,Hb S分子中的链的第六个氨基酸残基是一个非极性的缬氨酸,而正常的Hb A分子中的链的第六个氨基酸残基是谷氨酸,这一替换是由编码链的基因中的单个核苷酸取代引起的。 当Hb S处于脱氧构象时,Hb S中的每个链的Val-6与相邻的Hb S分子中的口袋接触(在氧合构象中,难于接近这个口袋),这种相互作用导致脱氧Hb S在低氧分压下发生聚合作用。生成的双链聚合物凝聚成含有14~16条链的长的螺旋纤维。这些不溶的聚合物使红细胞变形,形成镰刀形细胞。

纤维模型 镰刀形细胞血红蛋白纤维 纤维的形成

要点归纳 1. 氨基酸是蛋白质的构件分子,蛋白质中的氨基酸残基是通过肽键(酰胺健)连接的,残基的序列称为蛋白质的一级结构。但酰胺健并不等于肽健,只有两个氨基酸之间形成的酰胺健才定义为肽健。肽和小的蛋白质可以化学合成,现在常用的是固相合成法,是由C端向N端合成。 2. 蛋白质也象氨基酸那样具有等电点(pI),处于等电点的蛋白质所带净电荷为零。当蛋白质所处溶液pH大于该蛋白质的pI时,带负电荷,如果pH < pI时,蛋白质带正电荷。蛋白质的溶解性随着pH和离子强度而变化。

3. 蛋白质可以分为纤维蛋白和球蛋白。纤维蛋白一般都不溶于水,有一定的强度,具有简单重复的二级结构元件,在生物体内主要起着结构构件的作用。球蛋白是水溶性的,外形大致呈球状、紧密折叠的大分子,而且具有更复杂的三级结构。在球蛋白中一条多肽链中往往含有几种类型的二级结构,多肽链折叠紧凑,疏水氨基酸残基往往位于球蛋白的内部,而极性残基大多位于球蛋白表面。 4. 多肽链中相邻氨基酸残基通过肽键连接。肽键具有部分的双键特性,所以整个肽单位是一个极性的平面结构。由于立体上的限制,肽键的构型大都是反式构型。绕N—Cα和Cα—C键的旋转赋予了多肽链构象上的柔性。

5. 蛋白质结构水平分为四级:一级结构、二级结构、三级结构和四级结构。一级结构指的是氨基酸序列,二级结构是指肽链的局部肽段沿着一个轴有规律的折叠,三级结构是整个多肽链的三维构象,四级结构是指能稳定结合的两条或两条以上多肽链(亚基)的空间关系。 6. 蛋白质存在α-螺旋,β-折叠和转角等几种不同的二级结构。右手α-螺旋是在纤维蛋白和球蛋白中发现的最常见的二级结构。α-螺旋每圈含有3.6个氨基酸残基,螺距为0.54nm。稳定α-螺旋的主要力是螺旋内的氫健,即羰基氧(第n个残基)与该残基后面的第四个残基(第n+4)酰胺氫之间形成氫健,该氫健几乎与螺旋长轴平行。

7. β-折叠是另外一种常见的二级结构,处于β-折叠的多肽链相对于α-螺旋来说是肽链的一种伸展状态。分为平行(即两条链都为N→C方向)和反平行式(一条链为N→C,另一条链为C→N方向),维持β-折叠稳定性的力主要是相邻肽链(平行或反平行)之间羰基氧与酰胺氫形成的氫健。在β-折叠结构中,某个氨基酸残基沿着链长方向大约占据0.32nm~0.34nm距离。 8. 在胶原蛋白中还发现存在着另外的螺旋结构。一个胶原分子是由3个左手螺旋的多肽链相互缠绕形成的一个右手超螺旋。链间氢键维持着胶原蛋白的稳定,其中脯氨酸和赖氨酸残基修饰后分别生成的羟脯氨酸和羟赖氨酸残基增加了链间氫健的形成。

9. 稳定蛋白质三级结构的主要力包括二硫健、氫健、范德华力、疏水相互作用和离子相互作用。通过X射线衍射图谱提供的资料可以确定蛋白质的三级结构。 10. 球蛋白折叠成它的生物活性状态是一个有序、协同的过程。该过程涉及疏水相互作用、氢键形成、范德华相互作用和离子相互作用,有的蛋白还涉及到二硫健的形成。在细胞内,酶和伴娘蛋白协助折叠。折叠紧凑的球蛋白可以有选择地结合其他分子,例如含有血红素的血红蛋白和肌红蛋白可以结合和释放氧。

11. 经物理和化学处理(破坏次级键)后,蛋白质的三维结构遭到破坏,生物活性会丧失,但他的一级结构(共价健)并没有被破坏,这一现象称为蛋白质变性。某些变性的蛋白质在一定的条件下可以复性,自发地折叠回具有生物活性的天然构象。这也表明一个蛋白质的三级结构是由它的氨基酸序列确定的。 12. 肌红蛋白是一条含有153个残基的多肽链,这些氨基酸残基折叠成由8个α-螺旋组成的紧凑的球状结构。肌红蛋白含有一个血红素辅基,血红素能结合氧,位于蛋白质中疏水的裂隙中。 13. 大多数蛋白质中的很多肽段是处于非重复的构象区。这些区域包括用于连接螺旋和折叠的转角和环。二级结构进一步组合又形成超二级结构(或称为基元),超二级结构处于二级结构和三级结构之间。大的球状单位称为功能域,通常都与一种特殊的功能有关。

14. 血红蛋白是由四条肽链(两个α和两个β链)组成的,每条肽链都类似于肌红蛋白的肽链,都结合一个血红素。血红蛋白的脱氧(T)和氧合(R)构象在氧的亲和性方面有很大区别。由于结构上的相互作用与它的三级和四级结构有关,所以血红蛋白在结合氧的过程中显示出别构效应和协同性,BPG是一个重要的别构剂。 15. 肌红蛋白的氧饱和曲线为双曲线型,而血红蛋白的氧饱和曲线是S型。氧饱和曲线上的差别使得血红蛋白承担着将氧由肺运输到外周组织的任务,而肌红蛋白主要是接收血红蛋白释放的氧。 16. CO2浓度的增加降低细胞内的pH,血红蛋白结合H+和CO2将导致血红蛋白对氧亲和力下降,有利于血红蛋白在外周组织释放氧,这种现象称为波尔效应。

17. 血红蛋白分子一级结构上的轻微差别就可能导致功能上的很大不同,如正常成年人血红蛋白中的β链上第6位的谷氨酸残基被缬氨酸取代就会导致镰刀形细胞贫血病的异常血红蛋白HbS的生成。 18. 抗体是能结合外源物质的多结构域蛋白质,处于抗体的轻链和重链的N末端的结构域与抗原相互作用,达到除去抗原的目的。抗体特异结合抗原的显著特点常用来检测和分离未知的目的蛋白,该技术称为免疫印记法(或Western blot)。