(一)雷电机理 1、雷云的形成 由于大气的剧烈运动,引起静电摩擦和其他电离作用,使云团内部产生了大量的带正、负电荷的带电离子,又因空间电场力的作用,这些带电离子定向垂直移动,使云团上部积累正电荷,下部积累负电荷(情况也可以相反),云团内产生分层电荷,形成产生雷电的雷云。雷云的成因主要来自于大气的运动,当雷云在天空移动时,在其下方的地面上会静电感应出一个带相反电荷的地面阴影。如图:

Slides:



Advertisements
Similar presentations
第八章 雷电放电与防雷保护装置 8.1 雷云放电与雷电参数 一、雷云的形成 雷电放电电流高达数十、数百千安。
Advertisements

§3.4 空间直线的方程.
《解析几何》 -Chapter 3 §7 空间两直线的相关位置.
工厂供电 第8章 电气安全、接地与防雷 天津理工大学中环信息学院 自动化工程系.
5.7 建筑防雷与安全用电.
LSF系统介绍 张焕杰 中国科学技术大学网络信息中心
电力系统过电压.
超导磁悬浮小列车.
电力系统接地防雷保护.
第一章 液压传动系统的基本组成 蓄能器 1 功用 (1)辅助动力源,短时大量供油 特点: 采用蓄能器辅助供油,可以减小泵的流量,电机的功率,降低系统的温升。
一 电势 B点电势 A点电势, 令 令.
第4章 相关设备和部件 4.5 防雷措施.
                                                                                                                                                                
光学谐振腔的损耗.
现代雷电防护技术与标准实践和发展.
LSF系统介绍 张焕杰 中国科学技术大学网络信息中心
3.7叠加定理 回顾:网孔法 = 解的形式:.
现代电子技术实验 4.11 RC带通滤波器的设计与测试.
存储系统.
乐驾-车载无线终端-CARRO 产品类型:车载无线路由器 建议零售价格:¥599 江苏鸿信
数 控 技 术 华中科技大学机械科学与工程学院.
第一章 半导体材料及二极管.
第二章 双极型晶体三极管(BJT).
第8章 静电场 图为1930年E.O.劳伦斯制成的世界上第一台回旋加速器.
2.1.2 空间中直线与直线 之间的位置关系.
Positive gate bias-Induced Reliability in IGZO TFT
看一看,想一想.
从物理角度浅谈 集成电路 中的几个最小尺寸 赖凯 电子科学与技术系 本科2001级.
微机系统的组成.
线段的有关计算.
物理 九年级(下册) 新课标(RJ).
实验4 三相交流电路.
集成运算放大器 CF101 CF702 CF709 CF741 CF748 CF324 CF358 OP07 CF3130 CF347
晶体管及其小信号放大 -单管共射电路的频率特性.
第三章:恒定电流 第4节 串联电路与并联电路.
Three stability circuits analysis with TINA-TI
晶体管及其小信号放大 -单管共射电路的频率特性.
主要内容: 无线局域网的定义 无线传输介质 无线传输的技术 WLAN的架构 无线网络搭建与配置 无线网络加密配置
WPT MRC. WPT MRC 由题目引出的几个问题 1.做MRC-WPT的多了,与其他文章的区别是什么? 2.Charging Control的手段是什么? 3.Power Reigon是什么东西?
诺 金 EE07系列 小型OEM数字输出温湿度变送器 产品特点: 典型应用: ► 气象应用 ► 加湿器、除湿器 技术参数: 选型指南:
PowerPoint 电子科技大学 R、C、L的相位关系的测量.
实验二 射极跟随器 图2-2 射极跟随器实验电路.
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
6-1 求题图6-1所示双口网络的电阻参数和电导参数。
2013年第二学期计划 王玲
第八章 总线技术 8.1 概述 8.2 局部总线 8.3 系统总线 8.4 通信总线.
一 测定气体分子速率分布的实验 实验装置 金属蒸汽 显示屏 狭缝 接抽气泵.
125H201—无卤阻燃热缩管 ≥1014 Ω.cm 技术指标 规格表-1 产品介绍 产品特点 性能 指标 试验方法
第18 讲 配合物:晶体场理论.
HSC高速输出例程 HORNER APG.
电路原理教程 (远程教学课件) 浙江大学电气工程学院.
第八章 建筑防雷及接地.
GIS基本功能 数据存储 与管理 数据采集 数据处理 与编辑 空间查询 空间查询 GIS能做什么? 与分析 叠加分析 缓冲区分析 网络分析
四 电动机.
综合练习 电磁感应、交变电流、电磁波.
实验二 基尔霍夫定律 510实验室 韩春玲.
第五章 接地系统和接地装置简介 第 3 章 接地系统 r 一般规则 不同型式的接地系统 1 r 2.
信号发生电路 -非正弦波发生电路.
3.2 平面向量基本定理.
FH实验中电子能量分布的测定 乐永康,陈亮 2008年10月7日.
《智能仪表与传感器技术》 第一章 传感器与仪表概述 电涡流传感器及应用 任课教师:孙静.
FVX1100介绍 法视特(上海)图像科技有限公司 施 俊.
B12 竺越
第五章 过电压保护 一、单选题 1、国家相关标准中规定10KV系统中最高工作电压是( )。 A、11KV B、11.5KV C、12 KV
9.5 差分放大电路 差分放大电路用两个晶体管组成,电路结构对称,在理想情况下,两管的特性及对应电阻元件的参数值都相同,因此,两管的静态工作点也必然相同。 T1 T2 RC RB +UCC + ui1  iB iC ui2 RP RE EE iE + uO  静态分析 在静态时,ui1=
入侵检测技术 大连理工大学软件学院 毕玲.
2.5.3 功率三角形与功率因数 1.瞬时功率.
在我们生活中,哪些地方用到了电?.
混沌保密通讯 实验人 郝洪辰( ) 李 鑫( ).
9.6.2 互补对称放大电路 1. 无输出变压器(OTL)的互补对称放大电路 +UCC
Presentation transcript:

(一)雷电机理 1、雷云的形成 由于大气的剧烈运动,引起静电摩擦和其他电离作用,使云团内部产生了大量的带正、负电荷的带电离子,又因空间电场力的作用,这些带电离子定向垂直移动,使云团上部积累正电荷,下部积累负电荷(情况也可以相反),云团内产生分层电荷,形成产生雷电的雷云。雷云的成因主要来自于大气的运动,当雷云在天空移动时,在其下方的地面上会静电感应出一个带相反电荷的地面阴影。如图:

2、尖端放电与雷击 如果有一个带尖锋的金属球,让它带上负电,由于电荷同性相斥的作用,球体尖锋部分的电子受到同性电荷排斥力最强,最容易被排斥而离开金属球,这就是“尖端放电”。 地面上相对较高的建筑物,有时是避雷针,就好比金属球上的尖锋。雷击最容易在这些地方发生。 如图所示:

3、雷云放电 著名的雷云放电理论是“长间隙放电”理论,该理论认为雷云对地放电的过程可以分为四个阶段:即云中放电、对地先导、定向闪击和回闪四个阶段。 具体过程是这样的:雷云形成前,首先是云内放电和云间放电频繁,云中放电造成云中电荷的重新分布和电场畸变,当云中电荷密集处的电场强度达到25-30KV/cm的,就会由云团向地开始先导放电。 先导放电是步进的,发展的平均速度为105~106m/s,各脉冲间隔约30~90s,每阶段推进约50m,跳跃着逐步向下延伸,当先驱放电距地50m左右,可诱发迎面先导,通常迎面先导来自地面上最突出的部分(尖端放电最易发生处),当对地先导和地面的迎面先导会合时,就形成了从云团到地面的强烈电离通道。步进放电转为定向闪击。 定向闪击是沿最短路径进行的,紧接着回闪,这时出现极大的电流,开始雷电的主放电阶段,即雷击,在主放电中雷云与大地之间所聚集的大量电荷,通过先驱放电所开辟的狭小电离通道发生猛烈的电荷中和,放出能量,引发强烈的闪光和雷鸣。主放电的时间极短,约50~100s,主放电过程是逆着先导通道发展的,速度约为光速的1/20~1/2,主放电电流可达数十KA,是全部雷电流的主要部分。 主放电到达云端时就结束。然后残余电荷经过主放电通道流过来,产生短暂的余光。由于云中电阻较大,余光阶段的电流只有数百安培。持续时间0.03~0.15秒之间 通常一次雷电过程包括3~4次放电。重复放电都是沿着第一次放电通路发生的。

3、雷云放电

4、雷电的波形及参数 雷电波形及参数是防雷工程设计中的重要依据,根据这些数据才可能正确估算电子系统频带范围内雷电冲击的幅度和能量大小,进而确定避雷措施。 图1是标准雷电流波型图。 可以这样描述一个雷电波,幅值为Im,波头为T1,波长为T2的电流波, 记为T1/T2s 。 图1是标准雷电流波型图。

图2标准雷电压波形图 与标准雷电流波形图不同之处为, 图中A点在0. 3倍Vm处,且T1 =1 图2标准雷电压波形图 与标准雷电流波形图不同之处为, 图中A点在0.3倍Vm处,且T1 =1.67T也可以这样描述一个雷电波,幅值为Vm, 波头为T1, 波长为T2的电压波, 记为T1/T2s 。 图2标准雷电压波形图

(二)雷电的危害 1、雷电热效应的破坏作用 闪电表面上看只闪一次,实际上是一系列闪光,在闪光发生的瞬间,雷电流在极短的时间内,以连续的、尖峰脉冲形式通过强大电流。尤其是直击雷,它的放电电流平均达2.5万到4.5万安培间,大雷暴时最高达20万安培。 如果雷电击在树木或建筑物件上,被雷击的物体瞬间将产生大量热能,由于雷电流很大,通过的时间又极短(50~100s),根本来不及散发,以致物体内部的水份大量变成蒸气,并迅速膨胀,产生巨大的爆炸力,造成破坏。与雷电通道直接接触的金属因高温而熔化的可能性很大,因为通道的温度可高大6000~10000℃,甚至更高。因此在雷电流通道上遇到易燃物质,会引起火灾。

2、雷电冲击波的破坏作用 闪电时,由于空气受热急剧膨胀,产生一种叫“激波波前”的冲击波。又由于庞大体积的雷云迅速放电而突然收缩,电应力突然解除,会产生一种次声波。这两种冲击波都会引起附近的建筑物、人、畜受到破坏和伤亡。就仿佛炸弹在附近爆炸一样。

3、雷电流电动力的破坏作用 如果雷击的瞬间两根平行架设的导线的电流I1 和I2 都等于100KA。两导线的间距为50cm,计算结果表明,这两根导线每米要受到408kg的电动力。408kg/m的力完全有可能将导线折断。 折成锐角的导体间也受电动力作用。

4、雷电的静电感应作用 当空间有带电的雷云时,雷云下的架空导线等处会由于静电感应的作用而带上相反的电荷。当闪电发生后,由于架空导线与大地间的电阻较大,导线上积累的大量电荷不能与大地的异种电荷迅速中和,这就形成了局部地区的感应高电压。这类高电压在高压架空线上可达300~400KV,一般低压架空线路可达100KV,电信线路可达40~60KV,建筑物也会产生相当高的危险高压。 这种过电压对接地不良的电气系统有很大的破坏作用,它可以在其路径上的任何金属间隙中产生电弧打火,如果电弧打火发生于易燃场所中(如汽油库、瓦斯厂、火药库等场所),会引起火灾和爆炸,如果电弧打火发生在电路板上,则电路板将被破坏。

4、雷电的静电感应作用

5、雷电的电磁感应作用 由于雷电流有极大的峰值和陡度,可能在附近空间形成强大的瞬变电磁场,一个5m×5m的开口金属管,在雷电流峰值为100KA时,距离雷击点200m也可以感应到1000V左右的高压。零点几毫米的气体间隙就可能被击破,发生有害火花,损坏电气系统中的电气元件。

6、地电位变化 如果工作场所中各类地极是分开设置的,那么当雷击时,会引起某个雷击点附近地极电位的剧增,形成这个地极与其他地极间的电位差U,进而引起不同地极系统之间的电位不平衡,产生有害过电压,压差达到一定的数值时,由地极向上形成反击电流,会击穿或损坏电子设备。

7、雷电反击和引入高电位 闪电时,接闪装置(包括接闪器、接地引下线和接地体)在接闪瞬间与大地间存在很高的电压,这种高压能引起与大地相连的其它金属物品的闪击,这就是雷电反击。雷电反击会使室内人或物受到雷电直接伤害。 雷电引入高电位是指雷电流沿输电线,通信电缆,接收天线等通道窜入室内,发生闪击而造成雷击事故。

二、直击雷与感应雷概念 1、直击雷与感应雷的区别 在雷电防护领域,我们一般将雷电直接击中建筑物,传输线路、计算机设备并经设备入地的雷击现象称为直击雷。这种雷击形成的放电电流高达数百千安(我国工程计算中采用平均60KA的数值),电压则达百万伏以上,它的破坏作用极大,但发生的机率不太大。 真正对电子设备造成危害的是感应雷,感应雷产生与两种机制有关,一种是雷云静电场对地面物的“静电感应”作用。另一种是闪电引发的强大“电磁感应”作用。无论是“静电感应”或是“电磁感应”,都能在地面线路上感应出过电压、过电流,经传输通道进入计算机等电子设备,感应雷通常产生1万伏左右的瞬变过电压,过电压峰值一般在1000A左右,这对耐压程度才数百伏甚至数十伏的电子设备的破坏作用很大。由于感应雷发生的机率很高,使得电子时代雷击事故频繁发生。 一个30KA的雷击所产生的感应电压: Vj=2.2(Ln1000/a-1/2)di/dt×10-6(kv/m) 式中:a—雷电流引线与被感应体间的平均距离; di/dt+30/2.6=11.5kA/s 与雷电流引线平行的导体上感应电压Vj值列表如下: a(m) 10 100 200 300 400 500Vj(Kv/m) 9.5 4.2 2.5 1.6 0.9 0.2 由此表见,一个30KA的中等雷击,其引下线内数百米范围,都是感应雷的破坏对象。

2、直击雷的防范原理 防范直击雷采用避雷针、避雷带、避雷线、避雷网作为接闪器,引下线使雷电流沿固定路径向地极传导,最后通过良好的接地装置迅速而安全的将雷电流导入大地。 雷电流由人指定的路径入地,对建筑物等该防物体起到一定的保护作用。 如图A所示 防范直击雷时,要同时作好接闪、分流、接地、均压等工作。

三、电子时代的防雷问题 1、电子时代雷击事故增多

三、电子时代的防雷问题 1、电子时代雷击事故增多 感应雷使电子时代的雷击事故的发生机会大大增加,它能引起一万伏左右的雷电电磁脉冲,这种脉冲的波型为突峰型,持续时间在50纳秒之间。时间短而电压高,从而形成危害性很大的浪涌过电压。 因为随着现代电子技术的不断发展,人们运用计算机系统、自控设备和通讯网络的数量和规模都在不断扩大,这些敏感的电子设备的内部结构高度集成化。目前普遍使用的微机的CPU芯片最多集成有750万个晶体管,每两个晶体管之间的距离(这个距离称为线宽),目前在0.18微米至0.25微米之间,其耐流程度在毫安级。这就使得设备的耐过压/过流水平很低,而雷电电磁脉冲引起的浪涌电压,一般都在万伏左右,最小的雷电脉冲引起的电压级别也在千伏左右。此种过压会沿各种不同的线路通道引入电子设备,它可能引起整个系统运行中断,造成难以估算的巨额经济损失。雷电电磁脉冲引起的浪涌过电压已成为电子时代的一大公害。 据德国Wurttembergische保险公司统计,1994年间,在全部各种灾害造成的损害中,感应雷击造成的损害占全部灾害损失的33.8%。我国也有许多这方面的统计资料,从各种资料中可以看出,计算机网络系统的网卡、调制解调器、集线器最容易遇到感应雷伤害。

2、微电子设备的耐雷能力有限 感应雷的频谱虽然很宽,但从能量积累分布来看,大多集中在低频段,如10/700s冲击波,总能量95%以上分布在3KHZ频率以下,而1.2/50s冲击波,大约总能量90%以上分布在18KHZ频率以下。这类波形对工作在低频和直流状态的电子设备危害极大,当输入至集成电路任一端口上的能量达到10-6焦耳左右时,集成电路芯片便会遭到永久性破坏,磁场强度超过2.4高斯时,计算机的CPU将永久性损坏,当磁场强度超过0.07高斯时会引起计算机失效。 某权威机构对计算机通信接口中常用的集成电路芯片,用10/700s波形作了冲击试验,结果见下表: 集成电路型号 施加冲击位置 冲击耐压平均值 MC1488P 输出端 60V MC1489P 输出端 22V J274 输出端对地 32V J274 输出端子之间 50V J275 输出端子对地 31V J275 输出端子之间 30V TIL117 二极管反向 90V TIL117 三极管反向 25V 可以说,一方面微电子设备的耐雷能力很弱,另一方面感应雷引入通道增多。因此,电子时代的防雷问题日益突出。

3、避雷针增加感应雷机会 当雷击发生时,由避雷针、引下线、均压环和接地引下装置组成的外部防雷装置确实有效的抵御了雷击对建筑物结构的直接破坏,同时均布的避雷引下线与均压环也起到了一个稀疏的法拉第网笼的作用,保证了建筑物内人员不致因跨步电压升高导致触电死亡。但同时也增加了感应雷机会,对设置在建筑物内的电子系统造成损坏。 这是因为避雷针接闪后,强大的雷击电流沿引下线入地过程中,由于雷电流陡度di/dt的作用,会在雷电流引下路径上产生一个强大的瞬变磁场,处在这个瞬变磁场作用范围内的所有用电器、信号线、电源及它们的传输线路都因相对地切割了这个瞬变磁场而感应高电压。在雷击路径数百米范围内的电子设备均有遭受感应高压损坏的可能。 所以建筑物防雷设置反而增加了感应雷机会。增加了电子系统受雷击的可能性。在现代防雷工程设计过程中,应该兼顾建筑物内部的过压防护。

4、雷电打击电子系统的形式 雷电入侵电子系统主要有三种形式。 第一种是直击雷直接击中线路,雷电沿线路直接入侵设备。在雷雨期间,闪电直接落在电源入室线路和通讯线路上,这种情况在高山通讯站、天线发射台、农村空旷区较常发生,其雷击的能量非常大,可使导线熔化,设备炸裂。

第二种是感应雷引发的雷电电磁脉冲(简称LEMP),雷击时在闪电通道几公里范围内,通过静电感应和电磁感应的形式,在各种线路导线中感应出几千伏到几万伏的浪涌过电压,感应高压沿线路进入设备,这种情况发生的机会非常大。特别是在城市,各种线路分布密度大,几乎每次雷击都有成片地区产生感应高电压(感应雷),此感应雷损坏设备的现象最常见。虽然感应雷能量比直击雷要小得多,但其事故率直接上升。从大量受损现场的检测结果看,电子设备受感应雷袭击后,虽然元器件外观是没有明显损坏痕迹的,用仪表测量就会发现是内部已击穿,这种情况表现最为突出的是一些脆弱的集成器件、晶体管等。

第三种是建筑物避雷针接闪后,数万安的雷电流在泄入大地的同时,引发建筑物附近地电位急剧上升,又通过各种接地通道反击设备,造成计算机系统等电子设备的损坏,这种情况相对前两种情况为少,但它对设备损害最为严重。

目前,我国防范雷电过压侵害的任务更加严峻。原因首先是由于我国电力布线不规范,有些重要的计算机中心竟然没有分开的保护地极,在接地施工时往往采用零线和地线合一的方式进行操作,这又给设备受雷击损坏增加机会。第二是架空的信号线或网络线几乎没有考虑防雷问题,很容易受到感应雷袭击。第三个原因是有些设备虽然标称加装了防雷措施,实际上仅仅是在设备内部加了一些压敏电阻或放电管。在防雷设计时,没有考虑分级防范。防雷能力很有限,一旦遭受量级稍大的感应雷击,往往被击毁。第四个原因虽与雷电无关,但也会造成与雷击相似的损毁后果,当开或关电路上的电感性或电容性的负载、地极断路、电源电路短路时,都能产生很高的过压,产生浪涌脉冲损坏设备,这种短路电压虽然起因不同于雷击过压,但防范方法及过压性质是一样的 5、电子系统的防雷原则 从以上分析可知,雷电大多是从建筑物外部的各种线路通道进入建筑物内部的,这些线路通道包括由室外接入的电源线、信号线和通信线路等。 对计算机等电子系统的防雷原理就是:一方面应注意引出和引入线的屏蔽接地处理,另一方面应在雷电通道出入口处安装相应的防雷器件。 电子系统在作防雷设计应满足以下原则 ①防雷保护器件在线路中应不影响被保护设备的正常工作。 ②防雷器件应有较高的承受冲击能力,残压应足够小。 ③防雷设计时应符合“均一分一屏一地”原则。 “均”是均压等电位;“分” 是逐级分别泄流;“屏”是加强屏蔽;“地”是规范的接地系统。

四、现代防雷技术 现代防雷的技术原则强调全方位防护、综合治理、重点解决,把防雷看作是一个系统工程。这是因为雷电的危害作用无孔不入,在整个空间范围内侵袭电子设备,防范难度很大。我公司从多年的防雷实践过程中,总结出了一套切实可行的综合防雷措施,应用于各项工程中,已取得了很好的防雷效果。 1、基于综合防护的七点防雷措施 每一个综合防雷系统,应该包括三部直击雷防护、感应雷引发的过压抑制及接地等三个子系统。按照上述的原则要求,综合多年的实践经验,借鉴国内外的技术精华,我公司逐渐成熟了一套“综合防雷技术”。它主要包括以下七个要点: 综合防雷系统──七点防雷措施 ①:选取适宜的接闪方式 根据德国专家的计算,雷电能量有50%可直接流入大地,还有50%的 能量将通过各种感应方式,平均流入外露的各电气通道(如电源线、信号线和金属管道等)。 我们将根据实际情况,决定采取避雷针主动接闪,这是采用“躲”的办法,仅用避雷带、避雷网或避雷线,降低防区高设,争取用躲的办法,少接闪。减少雷电的电磁效应。 ②:安全引导雷电入地 完全依照国家的有关技术规范要求,作好雷击电流引下工作,避免雷击电流旁向闪击,最大限度的消除雷电流对电子设备的感应作用。 ③:完善的共地措施 首先是由降阻剂、接地棒和铜带的配合使用,达到更低的地电阻。然后利用地极间的瞬态连接技术,达到电源地、防雷地、保护地和信号地之间的电位平衡,形成共地系统,防止雷电通过接地系统对设备的反击,在有条件的施工场所,坚持“一点接地”技术。减少感应雷击对弱电设备的感应损坏。 ④:对重要的电子系统构造“等电位”电位浮岛 在对电子设备的电源、数据、通讯及信号线路进行感应雷防护时,使用直接电气联结或避雷器进行等电位连接,形成水涨船高式的等电位浮岛,雷电侵入时,整个系统的电位同时升降。其目的是防止强大雷电流流经之处的局部高电位与周围设备发生雷电反击(旁侧闪络放电),同时可消除因地电位骤然升高而产生的“地电位反击”事故。 ⑤:迅速分流雷电流 把通过各种线路引入电子系统的雷击电流,通过精心安装的分流系统,安全迅速的分流入地,降低系统的高电压,高速箝位电压达到安全值。 ⑥:全面屏蔽 出入室线路作全面屏蔽,以减轻雷电电磁脉冲的浪涌侵害。 ⑦:定期检测防雷装置 邀请“北京市避雷安全装置检测中心”作定期检测。发现问题,及时向用户发出“整改通知”,防患于未然之中

2、防雷设计时引入保护区概念 根据IEC(国际电工委员会)的提倡,我公司在防雷设计时与国际标准接轨,采用防雷保护区的概念进行工程设计。 什么是“防雷保护区”呢?从EMC(电磁兼容)的观点来看,雷电作用的区域,从空间上看,可以人为的划分成几个不同的保护区──0级防雷区(LPZ0)、1级防雷区(LPZ1)、2级防雷区(LPZ2)等等,最外层是0级防雷区(LPZ0),此区域是雷电可以直接击中的区域,危险性最高,越往里,遇受直击雷的危险程度降低。 防雷保护区的界面由钢筋混凝土墙等构成的屏蔽层形成。电气通道或穿墙金属管路往往穿越各界面,将雷电电磁脉冲导入其它防雷区域。 图示:将一个需要保护的空间划分为几个不同的防雷区 根据保护区概念的要求,我们将每一个工程分为外部避雷工程和内部防雷系统。由避雷针或避雷带、避雷网、引下线和接地系统构成外部防雷系统,主要用于防范LPZ0区的雷害(即保护建筑物免受雷灾)。对于LPZ1区以内的地方,构筑内部防雷系统,其目的在于防范感应雷侵入室内毁坏电子设备。为了实现内部避雷,需将进出室内的电缆、金属管道等作电气连接,不能直接连接的地方用避雷器做等电位连接。

3、雷电的分级防护技术 我们通常采用三种元件来抑制雷电引发的浪涌过压,它们是:气体放电管(Gas Tube)、瞬态抑制二极管(SAD—Silicone Avalanche Diode)和金属氧化物压敏电阻(MOV—Metal Oxide Varistor)。 但由于雷电引发的过压/过流的数量级很大,以上任何一种元件都不能单独胜任防雷要求,所以我们实行有效的分级防护措施,以达到合理的防雷要求。 [电源的分级防护]: 各级之间还必须有正确的退耦措施,退耦元件必须能无损坏的承受电压瞬降,同时不影响系统的正常传输。