第四章 维生素与辅酶 脂溶性:A、D、E、K,单独具有生理功能。 水溶性:B1、B2、B6、B12、C等,辅酶。

Slides:



Advertisements
Similar presentations
第十章 氨基酸代谢 第一节 蛋白质的酶促降解 第二节 氨基酸的降解 第三节 氨基酸的生物合成 第四节 氨基酸衍生的其它含氮化合物.
Advertisements

第 29 章 脂类的生物合成. 甘油的合成 脂肪酸的合成 二者分别转变为 3— 磷酸甘油和脂酰 CoA 后的连接.
第 11 章 维生素与辅酶 维生素特点:( 1 )生物生长发育和代谢所必需 的一类微量有机物质;( 2 )需量少,每日仅需 mg 或  g 级;( 3 )在体内不能合成或合成不足, 必需由食物供给( 4 )机体缺乏会导致物质谢障 碍,引起缺乏症。 分类:维生素一般习惯分为脂溶性和水溶性两大 类。其中脂溶性维生素在体内可直接参与代谢的.
维生素 (Vitamins) 第七章. 本章重点:  维生素的概述  维生素的分类  维生素缺乏与相关疾病.
第四章 维生素与辅酶 参与生物生长发育和代谢所必需的一类小分子有 机化合物,由于体内不能合成或合成不足,所以必须 由食物供给。 脂溶性: A 、 D 、 E 、 K ,单独具有生理功能。 水溶性: B 1 、 B 2 、 B 6 、 B 12 、 C 等,辅酶。
生物化学 第六章 维生素和辅酶 生物工程一班 曾楚萍. 维生素的分类 按照溶解性质将其分为两大类: 水溶性维生素:维生素 A ,维生素 D , 维生素 E ,维生素 K 等 脂溶性维生素:维生素 B1 ,维生素 B2 , 维生素 PP ,维生素 B6 ,泛酸生物素, 叶酸,维生素.
第六章 维生素与辅酶 (Vitamin & Cozymase) 一、维生素的一般概念和类别. 维生素是机体维持正常生命活动所必不可 少的一类有机物质。 在机体内含量很少,在生命活动中,维生 素既不是构成组织的基础物质,也不是能 量物质,但它是一类重要的生命物质,在 代谢中起调节作用,如果缺乏会导致一定.
人体的营养需要 ---- 维生素 B 维生素 B2 维生素 B3 维生素 B5 维生素 B6 维生素 B12.
第 7 章 辅酶. 维生素的定义 维生素是机体维持正常生命活动所必不 可少的一类有机物质。 维生素一般习惯分为脂溶性和水溶性两 大类。其中脂溶性维生素在体内可直接 参与代谢的调节作用,而水溶性维生素 是通过转变成辅酶对代谢起调节作用。
第六章 维生素化学. 维生素的发现 1906 年,英生化学家 F.G.Hopkins 1911 年,波兰化学家 Funk 发现 Vitamine -致命的胺 对维生素的认识 唐代孙思邈:动物肝防治夜盲症;谷皮熬粥防治脚气病; 1886 年,荷兰军医艾克曼开始研究脚气病; 纯化饲料 纯化饲料 + 极微量牛奶.
第四章 维生素与辅酶 目的与要求:通过本章学习,主要掌握 维生素的结构、分类和功能,以及维生 素与辅酶之间的关系。 思考 思考 
第一节 维生素概论 一、维生素的概念 二、维生素种类 掌握维生素的化学结构特点、名称、功能; 重点掌握水溶性维生素与辅酶的联系。 三、学习本章的基本要求 第二节 水溶性维生素及有关辅酶 B 族维生素 水溶性维生素 硫辛酸 维生素 C.
第七章 维生素. 本章主要内容 维生素概述 水溶性维生素 脂溶性维生素 第一节 维生素概述 概念:维持机体正常生长和健康所必需的一类 低分子有机化合物 特点: 1 既不是构成组织的材料,也不是供能物质; 2 需要量有限 ( 长期大剂量使用维生素易引起中毒; 长期供给不足时,易导致维生素缺乏症 );
第三章 第三章 维 生 素. 第一节 概 述 1 、定义 vitamin 维持机体正常生理功能所必需 的一类微量低分子有机化合物 人体一般不能合成,只能从食 物中获得.
第四节 RNA 的空间结构与功能. RNA 的种类和功能 核糖体 RNA ( rRNA ):核蛋白体组成成分 转移 RNA ( tRNA ):转运氨基酸 信使 RNA ( mRNA ):蛋白质合成模板 不均一核 RNA ( hnRNA ):成熟 mRNA 的前体 小核 RNA ( snRNA ):
一、氨基酸代谢概况食物蛋白质 氨基酸特殊途径  - 酮酸 糖及其代谢 中间产物 脂肪及其代谢 中间产物 TCA 鸟氨酸 循环 NH 4 + NH 3 CO 2 H2OH2OH2OH2O 体蛋白 尿素 尿酸 激素 卟啉 尼克酰氨 衍生物 肌酸胺 嘧啶 嘌呤 生物固氮 硝酸还原 (次生物质代谢) CO.
第 七 章 氨 基 酸 代 谢 Metabolism of Amino Acids. 思考题: 1 、简述真核细胞内蛋白质降解的途径。 2 、体内氨基酸脱氨基有哪些方式?各有何特点? 3 、简述 α- 酮酸的代谢去路。 4 、丙氨酸-葡萄糖循环的过程和有何生理意义? 5 、试述尿素生成的过程、部位及调节。
第七章 氨基酸代谢. NH 2 -CH 2 -COOH + ½ O 2  H-CO-COOH + NH 2 第一节 Amino acid degradation 1. 氧化脱氨基 氨基酸在酶的作用下脱去氨基生成相应酮酸的过 程,叫氧化脱氨基作用 甘氨酸氧化酶 一. 氨的去路.
第四章 酶化学 ——维生素和辅酶.
水溶性维生素 北京大学营养与食品卫生学系 朱文丽.
第11章、维生素与辅酶 11.1 维生素的定义和分类 11.2 NAD+和NADP+是尼克酸的衍生物
生命期与营养.
Chapter 4 维 生 素 和 辅 酶.
第四章 维生素与辅酶 第一节 维生素的发现和分类 第二节 脂溶性维生素 第三节 水溶性维生素 第四节 作为辅酶的金属离子
第六章 维生素 脂溶性维生素 水溶性维生素.
第九章 脂类代谢 本章主要介绍脂类(主要是脂肪)物质在生物体的分解及合成代谢。要求学生重点掌握脂肪酸在生物体内的氧化分解途径—β-氧化和从头合成途径,了解脂类物质的功能和其他的氧化分解途径。 思考 脂类代谢 返回.
第 十 八 章 维生素与微量元素 Vitamins and Microelements.
第六章 维生素 ( Vitamin ).
第4章 维生素 第一节 概述 第二节 脂溶性维生素 第三节 水溶性维生素 第四节 维生素类药物的工业生产.
第 五 章 维生素与辅酶 Vitamins and coenzymes.
第11章 维生素与辅酶 Vitamin and Coenzyme.
第六章 维生素与辅酶.
第十八章 维生素和无机物.
第一节 维生素的概述 第二节 脂溶性维生素 第三节 水溶性维生素与辅酶
维生素与辅酶 维生素(vitamin)是参与生物生长发育和代谢所必需的一类微量有机物质。这类物质由于体内不能合成或者合成量不足,所以必需由食物供给。已知绝大多数维生素作为酶的辅酶或辅基的组成成分,在物质代谢中起重要作用。机体缺乏维生素时,物质代谢发生障碍,引起维生素缺乏症。 脂溶性维生素和水溶性维生素.
Enzyme 第11章 维生素和辅酶.
Chapter 4 Vitamins. Classification of vitamins vitamins water -soluble lipid-soluble Vit C Vit B A, D, E, K B1, B2, B6, B12, PP, pantothenic acid , folic.
第八章 维生素 Vitamins.
第六章 维生素 ( vitamins ).
维生素与辅酶 生物化学.
葡萄糖 合成 肌糖元 第六节 人和动物体内三大营养物质的代谢 一、糖类代谢 1、来源:主要是淀粉,另有少量蔗糖、乳糖等。
第30章 蛋白质的降解和氨基酸的分解代谢.
第十五章 细胞代谢调控 物质代谢途径的相互联系 代谢的调节.
第30章 蛋白质的降解 及氨基酸的分解代谢.
卫生部“十一五” 规划教材 全国高等医药教材建设研究会规划教材
第七节 维生素与辅因子.
第 四 章 维生素与辅酶 医学院生化教研室.
第九章 脂类代谢 脂肪的分解代谢 脂肪的生物合成.
内容提要 ◆绪论 ◆第一章 蛋白质 ◆第二章 核 酸 ◆第三章 酶 ◆第四章 维生素 ◆第五章 生物膜 ◆第六章 代谢总论
第九章 蛋白质的酶促降解和氨基酸代谢.
第六章 维生素与激素 第一节 脂溶性维生素 第二节 水溶性维生素 第三节 激素
生物技术一班 游琼英
第十章 蛋白质的酶促降解及氨基酸代谢 第一节 蛋白质的酶促降解 第二节 氨基酸的分解 第三节 氨基酸分解产物的转化
Chapter 7 Metabolism of Amino Acids
第七章 蛋白质的酶促降解和氨基酸代谢.
第七章 蛋白质分解和氨基酸代谢.
30 蛋白质降解和 氨基酸的分解代谢.
第七节 维生素 一、概述 (一)共同特点 (二)分类: 1. 脂溶性维生素:VA、VD、VE、 VK。
第七章:维生素 什么是维生素? 维生素(vitamin)是机体维持正常功能所必需的,但在人体内不能合成或合成量不足,必须由膳食提供,在食品中含量极微(仅以mg或ug计)的一大类有机小分子营养素。 特点: ①化学结构各异,生理功能各不相同。 ②不供给人体热量,不是食品和人体的质构成分,但却是人体必需的营养成分。
Metabolic Interrelationships
促进凝血因子形成药.
第 三 章 酶 Enzyme The biochemistry and molecular biology department of JMU.
第五章 维生素 维生素(vitamin)是维持机体正常生理功能所必需,但在体内不能合成或合成量不足,必须由食物供给的一类低分子有机化合物。
Chapter 3. vitamin Lipid-soluble vitamin Water- soluble vitamin.
第9章 脂代谢.
超越自然还是带来毁灭 “人造生命”令全世界不安
Carbohydrate Metabolism
遗传物质--核酸 核酸分子组成 核酸分子结构.
四、胞液中NADH的氧化 1. -磷酸甘油穿梭作用: 存在脑和骨骼中.
第四节 甲状旁腺与调节钙、磷 代谢的激素 掌握要点: 甲状旁腺素的生理作用 降钙素的生理作用 1.25 — 二羟VD3的生理作用.
Presentation transcript:

第四章 维生素与辅酶 脂溶性:A、D、E、K,单独具有生理功能。 水溶性:B1、B2、B6、B12、C等,辅酶。 第四章 维生素与辅酶 参与生物生长发育和代谢所必需的一类小分子有机化合物,由于体内不能合成或合成不足,所以必须由食物供给。   脂溶性:A、D、E、K,单独具有生理功能。 水溶性:B1、B2、B6、B12、C等,辅酶。

第一节   脂溶性维生素 一、  维生素A和胡萝卜素 1、   结构:化学名称为视黄醇,环己烯不饱和一元醇,包括两种:A1、A2

2、   维生素A的来源 肝脏、乳制品、蛋黄 胡萝卜、绿叶蔬菜、玉米

β-胡萝卜素、α-胡萝卜素、γ-胡萝卜素、黄玉米色素在肝脏、肠粘膜内转化成A。

3、   功能 与视觉有关。 缺乏症:夜盲症。 活性形式:11-顺式视黄醛

  视紫红质为弱光感受物,当弱光射到视网膜上时,视紫红质分解,并刺激视神经而发生光觉。 11-顺式视黄醛,在暗光下经视网膜圆锥细胞作用后,与视蛋白结合成视紫红质,形成一个视循环。 当全反视黄醛变成11-顺式视黄醛时,部分全反视黄醛被分解为无用物质,故必需随时补充维生素A,每日补充量1 mg。

二、  维生素D 1、结构 固醇衍生物 D3:胆钙化固醇(动物) D2:麦角钙化固醇(植物) 植物体内只有维生素D2原,没有维生素D

2、 来源 (1)D3来源 :鱼肝油、牛奶、蛋黄、肝、肾等 (2)D原转化 酵母、真菌、植物中: 2、   来源 (1)D3来源 :鱼肝油、牛奶、蛋黄、肝、肾等 (2)D原转化 酵母、真菌、植物中: 麦角固醇(D2原)维生素D2 (麦角钙化固醇) 动物体内: 7一脱氢胆固醇(D3原)  维生素D3 (胆钙化固醇)

3、 功能 与洚钙素、甲状旁腺素一起调节钙磷代谢,维持血中钙磷正常水平。 D3:提高血钙、血磷水平,促进新骨的生成与钙化。 3、   功能 与洚钙素、甲状旁腺素一起调节钙磷代谢,维持血中钙磷正常水平。 D3:提高血钙、血磷水平,促进新骨的生成与钙化。 缺乏症:佝偻症等。

活性形式:1,25一二羟基胆钙固醇。 维生素D3 (胆钙化固醇)→25-羟基胆钙固醇(肝脏)→1,25一二羟基胆钙固醇(肾脏) 靶组织: 小肠(促进Ca2+ 的吸收、运输 ) 骨骼(促进Ca2+的沉积 )中。 肾小管:促进钙磷的重吸收

三、  维生素E 化学名称:生育酚,共有8种,直接具有活性。 1、   结构 苯骈二氢吡喃的衍生物

2、 来源 3、 功能 植物油:麦胚油、玉米油、花生油、棉子油、蛋黄、牛奶、水果等。 2、   来源 植物油:麦胚油、玉米油、花生油、棉子油、蛋黄、牛奶、水果等。 3、   功能 机理: 抗氧剂,清除氧自由基,对抗生物膜中不饱和脂肪酸的过氧化,保护生物膜的结构与功能 生理功能: (1)抗器质性生殖不育 (2)促进血红素合成,延长红细胞寿命,防止非缺铁性贫血 缺乏症: (1)器质性生殖不育 (2)红细胞减少,贫血

四、  维生素K 1、结构 2-甲基-1、4-萘醌的衍生物

2、   来源 K1:绿色蔬菜、动物肝脏、牛奶、大豆, K2:肠道微生物合成(大肠杆菌、乳酸菌) K3:临床使用的合成物 K4:凝血活性更高

3、 功能 凝血酶原谷氨酸羧化酶的辅因子,促进肝脏中凝血酶原(因子II )的活化,并调节其他凝血因子的合成(因子VII 、IX、 X)。 3、   功能 凝血酶原谷氨酸羧化酶的辅因子,促进肝脏中凝血酶原(因子II )的活化,并调节其他凝血因子的合成(因子VII 、IX、 X)。 缺乏症:凝血时间延长,肌肉、胃肠道出血 。 凝血过程中,许多凝血因子的生成与维生K有关。 ①凝血酶原, 即因子II ②转变加速因子前体, 因子VII ③血浆凝血酶激酶 因子IX ④司徒氏因子 因子X

凝血酶原:N —(Glu)10—X— 维生素K依赖性的谷氨酰羧化酶 凝血酶原:N—( γ-羧化 Glu)10 —X— 因子Xa Ca2+ 因子Xa 凝血酶:N—X—

第二节   水溶性维生素与辅酶 (1)主要是B族维生素,绝大多数都是辅酶。 (2)硫辛酸 (3)维生素C

一、 维生B1与焦磷酸硫胺素(TPP) 化学名称:硫胺素 别名:抗神经炎维生素、抗脚气病维生素 1、 结构 嘧啶-噻唑衍生物 1、   结构 嘧啶-噻唑衍生物 活性形式:硫胺素焦磷酸(TPP) 硫胺素 + ATP Mg2+ TPP + AMP 硫胺素激酶

2、功能(TPP) α-酮酸脱羧酶的辅酶:丙酮酸、α-酮戊二酸脱羧酶。 乙酰乳酸合成酶辅酶 转酮酶辅酶 磷酸酮酶辅酶 缺乏症:脚气病、多发性神经炎。 3、   来源: 谷类的外皮及胚芽、麦麸、米糠、瘦肉

二、 维生素B2与黄素辅酶(FAD、FMN) 化学名称:核黄素 1、   结构  7、8-二甲基异咯嗪与核醇的衍生物 FMN/FMNH2 , FAD /FADH2   核黄素+ATP→FMN+ADP, FMN+ATP→FAD+ppi

2、 功能 FMN、FAD作为氧化还原型黄素辅基,可分别与酶蛋白结合(称黄素蛋白),构成脱氢酶的辅基。 黄素蛋白催化的反应 2、   功能 FMN、FAD作为氧化还原型黄素辅基,可分别与酶蛋白结合(称黄素蛋白),构成脱氢酶的辅基。  黄素蛋白催化的反应 酶 底物 产物 辅酶 脂酰-CoA脱氢酶 脂酰-CoA FAD 琥珀酸脱氢酶 琥珀酸 反丁烯二酸 FAD D-a.a氧化酶 D-a.a α-酮酸 FAD 羟基乙酸氧化酶 羟基乙酸 乙醛酸 FMN

3、   来源 肝脏、酵母、大豆和米糠等 4、缺乏症状 皮肤炎及黏膜炎:口角炎、舌炎、唇炎、

三、  维生素B3—泛酸与辅酶A(CoA) Pantothenic acid 维生素B3也称泛酸、遍多酸,是辅酶A、ACP的组成成分

1、 结构 VB3:α、γ-二羟基-β、 β –二甲基丁酸与β-丙氨酸 通过肽键形成的缩合物 辅酶A(CoA-SH):3’,5’ADP、Pi、泛酸、β-巯基乙胺 活性位点: β-巯基乙胺的-SH

2、 功能: (1)组成CoA-SH: CoA-SH是主要的脂酰基载体,乙酰辅酶A是糖代谢、脂肪代谢、氨基酸代谢的枢纽。 2、   功能: (1)组成CoA-SH: CoA-SH是主要的脂酰基载体,乙酰辅酶A是糖代谢、脂肪代谢、氨基酸代谢的枢纽。 (2)组成酰基载体蛋白(acylcarrier protein,ACP): 4-磷酸泛酰巯基乙氨通过共甲键与酰基载体蛋白的Ser-OH相连。

3、来源 肝脏、肾、蛋、小麦、米糠、花生、豌豆 蜂王浆

四、 维生素B5与烟酰胺辅酶 维生素B5包括: 烟酸(尼克酸,nicotinic acid) 烟酰胺(尼克酰胺,nicotinamide) 烟酰胺是合成NAD、NADP的前体  

1、结构:吡啶衍生物 烟酸、烟酰胺、NAD、NADP的结构

3、B5来源广泛 2、NAD+、NADP+是许多脱氢酶的辅酶。 NAD+:烟酰胺腺嘌呤二核苷酸,辅酶I NADP+:烟酰胺腺嘌呤二核苷酸磷酸,辅酶II 3、B5来源广泛 肝脏、酵母、花生、谷类、豆类、肉类

五、  维生素B6与磷酸吡哆醛辅酶 维生素B6包括:吡哆醛、吡哆胺、吡哆醇 1、结构   吡啶衍生物 活性形式:磷酸吡哆醛、磷酸吡哆胺

2、磷酸吡哆醛/磷酸吡哆胺参加的反应 磷酸吡哆醛/磷酸吡哆胺作为辅酶,广泛参与涉及氨基酸的各种反应: 转氨基作用 脱羧作用 脱氨基作用 消旋作用 3、来源广泛: 五谷杂粮 肠道细菌合成

 六、  维生素B7 生物素与羧化辅酶 1、结构: 尿素-噻吩-戊酸衍生物 活性位点:N-1

2、生物素是多种羧化酶的辅基 生物素的戊酸羧基与羧化酶中Lys侧链的-NH2共价相连, 通过尿素-N1H的羧化/去羧化作用传递羧基

3、依赖生物素的羧化酶 乙酰CoA羧化酶: 生物素羧化酶(biotin carboxylase) 生物素羧基载体蛋白(biotin carboxyl carrier protein , BCCP) 转羧基酶(transcarboxylase)

4、来源广泛 肝脏、肾、蛋黄、酵母、蔬菜、五谷杂粮 肠道细菌合成 ★抗生物素蛋白(亲和素),avidin

七、  维生素B11 叶酸 P371 维生素B11又名叶酸,喋血谷氨酸  

七、 维生素B11 叶酸 维生素B11又名叶酸,喋血谷氨酸 1、 结构 及功能 活性形式:四氢叶酸(THF),传递一碳单位的辅酶 1、 结构 及功能   活性形式:四氢叶酸(THF),传递一碳单位的辅酶 传递的一碳单位有:甲基、亚甲基(甲叉)、甲川基、甲酰基、亚胺甲基 活性位点:N5、N10  

2、来源广泛 肝脏、肾、酵母 肠道细菌合成

八、 维生素B12 钴胺素 化学名称:钴胺素。 活性形式; (1)5’—脱氧腺苷钴胺素—— 甲基丙二酸单酰辅酶A变位酶的辅酶 (2)甲基钴胺素

九、  硫辛酸 1、结构

2、硫辛酸是丙酮酸脱氢酶、α-酮戊二酸脱氢酶的辅酶

十、  维生素C 1、   结构

2、理化性质 又名抗坏血酸,有酸味。为一种还原剂。其水溶液不稳定,在有氧或碱性环境中极易氧化。其氧化过程为,还原型维生素C先被氧化为氧化型维生素C,若进一步氧化为二酮古洛糖酸时,便失去维生素C活性了。铜、铁等金属离子可促进上述反应过程。 吸收、转运与代谢 维生素C在小肠被吸收。血浆中维生素C可逆浓度梯度转运至许多组织细胞中去,并在其中形成高浓度积累。维生素C从尿中排除。

3、   生理功能: 1.参与体内氧化还原反应 作为一种电子共体,具有多种生理功能。 2.参与羟化反应 维持胶原蛋白的正常功能 参与胆固醇的羟化 使胆固醇转变为胆酸,从而降低血胆固醇含量。 参与神经递质合成及酪氨酸代谢等。 3.研究认为有抗肿瘤及预防感冒的作用。

4、缺乏症:坏血病,毛细血管脆弱,牙龈发炎出血。 典型缺乏症为坏血病,在临床上有多种表现症状。 毒性很低。 一次口服过大时可能出现腹泻症状。 长期摄入过高而饮水较少的话,有增加尿路结石的危险。

洪绍光 世界卫生组织:65岁以前为中年人 65-74岁为青年老人 75-90岁为老年人 生物学原理: 人的寿命为最后一颗牙齿长出的时间的5-7倍. 合理膳食、适量运动、戒烟限酒、心理平衡

一、二、三、四、五 每天喝一袋牛奶 二百五十克到三百五十克碳水化合物 三分高蛋白 四句话:有粗有细、不咸不淡、三四五顿、七八分饱 500克蔬菜和水果

红、黄、绿、白、黑 “红” 是一天一个西红柿 “黄” 是红黄蔬菜 “绿” 是绿茶 “白” 是燕麦片 “黑” 是黑木耳