Business Statistics Topic 6

Slides:



Advertisements
Similar presentations
20-Opening 統計學 授課教師:楊維寧 10Simple-R-Commands.
Advertisements

Sampling 抽樣 中央大學. 資訊管理系 范錚強 mailto: updated 11.
仪 容. 一、化妆的技巧 眼部的化妆 唇部化妆 眉部化妆 鼻部化妆 根据脸型化妆 根据脸型选发型.
Survey Sampling 問卷調查和訪談
人群健康研究的统计方法 预防医学系 指导教师:方亚 电话:
Measures of location and dispersion
概率论与数理统计 课件制作:应用数学系 概率统计课程组.
第一章 緒論.
如何定义和确定参考区间 郭健 卫生部北京医院.
SPSS统计软件的使用方法基础 主讲人:宋振世 (闵行校区) 电 话:
Estimating Chapter 10& Chapter 12 No:1 5/5/2009.
第 六 章 審 計 抽 樣.
Human Resource Management
第三章 隨機變數.
摘要的开头: The passage mainly tells us sth.
假設檢定.
Platypus — Indoor Localization and Identification through Sensing Electric Potential Changes in Human Bodies.
Population proportion and sample proportion
模式识别 Pattern Recognition
SPC introduction.
What are samples?. Chapter 6 Introduction to Inferential Statistics Sampling and Sampling Designs.
第十章 兩母體之假設檢定 Inferences Based on Two-Samples:
Estimation and Confidence Intervals
分析化学教程 第二章 分析数据处理及 分析测试的质量保证 (1) 分析化学教程( 学年)
第 3 章 敘述統計:數值方法.
Continuous Probability Distributions
第 5 章 樣本資料的數值分布.
非财务人员的财务管理 -基础财务 辛怀军 QQ:
Properties of Continuous probability distributions
Sampling Theory and Some Important Sampling Distributions
Homework 4.
簡單迴歸模型的基本假設 用最小平方法(OLS-ordinary least square)找到一個迴歸式:
第11章 抽樣設計 本章的學習主題 1.抽樣的基本概念 2.抽樣的程序 3.機率抽樣 4.非機率抽樣 5.電話抽樣
製程能力分析 何正斌 教授 國立屏東科技大學工業管理學系.
第一章 敘述統計學.
圖表製作 集中指標 0628 統計學.
Chapter 7 Sampling and Sampling Distributions
Interval Estimation區間估計
第 3 章 敘述統計II:數值方法 Part A (3.1~3.2).
Workshop on Statistical Analysis
描述性统计学 作者 Dr. Maria Correa-Prisant 翻译 lvruiqin(DXY)
统 计 学 (第三版) 2008 作者 贾俊平 统计学.
MyLibrary ——数字图书馆的个性化服务
Using the relativity principle, Einstein is able to derive that the energy of an object can be written as For v = c, the energy is infinite. Hence you.
第 9 章 估計與信賴區間.
抽样和抽样分布 基本计算 Sampling & Sampling distribution
Introduction to Basic Statistics
抽樣分配 Sampling Distributions
相關統計觀念復習 Review II.
Introduction to Basic Statistics
Chapter 04 流程能力與績效分析.
Review 統 計 方 法 的 順 序 確定目的 蒐集資料 整理資料 分析資料 推論資料 (變量,對象) (方法:普查,抽樣)
5.2 常用统计分布 一、常见分布 二、概率分布的分位数 三、小结.
Dr. C. Hsieh College of Informatics Kao yuan University
抽样理论 与 参数估计 主讲人:孟迎芳.
The Bernoulli Distribution
CH13 超越描述統計:推論統計.
Review of Statistics.
磁共振原理的临床应用.
名词从句(2).
第四章 常用概率分布 韩国君 教授.
§5.2 抽样分布   确定统计量的分布——抽样分布,是数理统计的基本问题之一.采用求随机向量的函数的分布的方法可得到抽样分布.由于样本容量一般不止2或 3(甚至还可能是随机的),故计算往往很复杂,有时还需要特殊技巧或特殊工具.   由于正态总体是最常见的总体,故本节介绍的几个抽样分布均对正态总体而言.
品質管理與實習 : MIL-STD-105E 何正斌 國立屏東科技大學工業管理學系.
生物统计学 Biostatistics 第一章 统计数据的收集与整理
Chapter 9 Validation Prof. Dehan Luo
第七章 计量资料的统计分析.
簡單迴歸分析與相關分析 莊文忠 副教授 世新大學行政管理學系 計量分析一(莊文忠副教授) 2019/8/3.
抽樣分配.
Gaussian Process Ruohua Shi Meeting
Presentation transcript:

Business Statistics Topic 6 Estimation

Business Statistics:Topic 6 Learning Objectives By the end of this topic you will be able to: Explain basic estimation processes Estimate population parameters such as mean and proportion Use confidence interval estimation techniques when s is known & unknown Choose the appropriate sample size for estimation purposes Business Statistics:Topic 6

Business Statistics:Topic 6 Estimation Business Statistics:Topic 6

The Estimation Process Population I am 90% confident that µ is between 25 and 35 µ = ? Sample mean, is 30 Draw Sample Business Statistics:Topic 6

Business Statistics:Topic 6 Point Estimates Estimate population parameters Using sample statistics Mean µ Standard Deviation  Proportion P S pS These are single value estimates They do not tell us how close our estimate is to the actual unknown parameters Business Statistics:Topic 6

Business Statistics:Topic 6 Interval Estimates As the sample statistic varies from sample to sample, an interval based on the value of the sample statistics provides an estimate of the population parameter. A level of confidence is selected such as 90%, 95% or 99% This tells us how close the estimates are to the true population parameter Business Statistics:Topic 6

Business Statistics:Topic 6 Interval Estimation Business Statistics:Topic 6

Confidence Interval for µ ( known) Assumptions Population standard deviation  is known Population follows a normal distribution (or) Sample size is large Business Statistics:Topic 6

Confidence Interval for µ ( known) (Sample mean)  (z).(Standard Error) Range Interval The value of ‘z’ changes according to the confidence level (90%,95% or 99%) Business Statistics:Topic 6

Business Statistics:Topic 6 Confidence Level 100 (1-)% Where  is the proportion of the tails (upper & lower) outside the confidence interval Business Statistics:Topic 6

Business Statistics:Topic 6 90% Confidence Level  is 10% Each tail is 5% Z = 1.645 Business Statistics:Topic 6

90% Confidence Interval Estimate of  90% of similarly constructed intervals contain  and 10% do not Business Statistics:Topic 6

Business Statistics:Topic 6 Example The management of a famous restaurant wants to estimate the average amount a customer spends for dinner. The management believes that the amount spent by all customers (population) follows a normal distribution with a standard deviation of $5. They selected a random sample of 36 customers and found the sample mean to be $35. Business Statistics:Topic 6

90% Confidence Interval Estimate of  90% confident that the value of the population mean m of the amount spent lies in this interval. Business Statistics:Topic 6

Business Statistics:Topic 6 Interval Estimation Business Statistics:Topic 6

Confidence Interval for µ ( unknown) Assumptions Population standard deviation  is unknown Population follows a normal distribution (or) Sample size is large Business Statistics:Topic 6

Business Statistics:Topic 6 由于在实际工作中,往往σ是未知的,常用s作为σ的估计值,为了与Z转换区别,称为t转换,统计量t 值的分布称为t分布。 学生t-分布(Student's t-distribution)经常应用在对呈正态分布的总体的均值进行估计。 Business Statistics:Topic 6

Business Statistics:Topic 6 以0为中心,左右对称的单峰分布; t分布是一簇曲线,其形态变化与n(确切地说与自由度ν)大小有关。自由度ν越小,t分布曲线越低平;自由度ν越大,t分布曲线越接近标准正态分布(u分布)曲线,如图. 对应于每一个自由度ν,就有一条t分布曲线,每条曲线都有其曲线下统计量t的分布规律 Business Statistics:Topic 6

Business Statistics:Topic 6 k=120(正态) K=20 K=5 Business Statistics:Topic 6

Business Statistics:Topic 6 t分布的均值与标准正态分布均值相同,为0,但方差为k/(k-2)。由此,在求t分布的方差时定义自由度必须大于2。 标准正态分布的方差等于1,因此,t分布方差总大于标准分布的方差,也就是说,t分布比正态分布略“胖”些。 Business Statistics:Topic 6

Business Statistics:Topic 6 当k增大时,t分布的方差接近于标准正态分布方差值1。 例如: 当k=10时,t分布的方差为10/8=1.25; 当k=30时,t分布的方差为30/28=1.07; 当k=100时,t分布的方差为100/98=1.02; 结论:随着自由度的逐渐增大,t分布近似于正态分布。 注意:对于t分布,不要求其样本容量很大,k=30时,t分布与正态分布已很近似。 Business Statistics:Topic 6

Business Statistics:Topic 6 例:自由度为10,P(t>1.812)=P(t<-1.812)=0.05 P(︱t︱>1.812)=P(t>1.812)+P(t<-1.812)=0.1 -1.812 1.812 0.05 Business Statistics:Topic 6

Business Statistics:Topic 6 例:变量X表示面包房每日出售的面包量,在15天内,出售面包的样本方差为16。假定真实的出售量为70条,求任意15天内出售面包平均数量为74条的概率。 分析:本例中已知样本方差S²=16,则S=4,总体均值(真实的出售量)=70,运用t变量公式得: 查t分布表,自由度为(n-1)=15-1=14 当自由度为14时,查表得,t值大于等于2.977的概率为0.005,大于等于4.140的概率为0.0005,所以,t值大于等于3.873的概率介于0.0005~0.005之间。 Business Statistics:Topic 6

Confidence Interval Estimate of µ ( unknown) Use ‘t’ instead of ‘z’ Use ‘s’ an estimate of  Sample mean  (tn-1).(Standard Error) Range Interval Business Statistics:Topic 6

Business Statistics:Topic 6 ‘t’ Table 10/2 = 5%= .05 (lower left hand tail) 45% = 0.45 (upper right hand tail) 90% - t= -2.015 t=2.015 Degrees of freedom, df = n-1 Match ‘df’ and upper tail area, a /2 For example, ‘t’ value with 90% confidence level & sample size, n = 6 a = 10% a /2 = 5% =.05 df=n-1=6-1=5 Match (5, .05) ‘t’ value = 2.0150 Business Statistics:Topic 6

Confidence Interval ( unknown) Population follows a normal distribution Given 90% confidence level Sample size 6 Business Statistics:Topic 6

Business Statistics:Topic 6 Example The management of a famous restaurant wants to estimate the average amount a customer spends for dinner. The management believes that the amount spent by all customers (population) follows a normal distribution. They selected a random sample of 36 customers and found the sample mean to be $35 and sample standard deviation to be $5. Note that  is unknown: Use ‘t’ Business Statistics:Topic 6

90% Confidence Interval estimate of  90% confident that the value of the population mean m of the amount spent lies in this interval. Business Statistics:Topic 6

Business Statistics:Topic 6 What do you notice? The confidence interval using ‘t’ is wider than the confidence interval using ‘z’ As ‘n’ increases the ‘t’ values moves closer to the ‘z’ value Business Statistics:Topic 6

Determining the sample size With the previous example, if the management chooses a 99% confidence level, and with  $2 of sampling error, then they need to select a sample of at least size 42 e is sampling error Business Statistics:Topic 6

Interval Estimation of Population Proportion (p) Business Statistics:Topic 6

Business Statistics:Topic 6 Example In an election poll a random sample of 500 people showed that 42 preferred voting for a particular candidate. Set up a 90% confidence interval estimate for the population proportion, p Business Statistics:Topic 6

Business Statistics:Topic 6 Example Business Statistics:Topic 6

Determining the sample size Based on the previous example, what sample size is needed to be within ± 2% with 95% confidence? Business Statistics:Topic 6

Business Statistics:Topic 6 Summary In this topic you have discussed: Estimation processes Point estimates of population parameters Confidence interval estimate of  when  is known Confidence interval estimate of  when  is unknown Determining the sample size Confidence interval estimation of the population proportion Business Statistics:Topic 6