Chap5 Lateral Motion (Stick Fixed) 飛機橫航向運動(無輸入)
INTRODUCTION The stick fixed lateral motion of an airplane disturbed from its equilibrium state is a complicated combination of Rolling側滾 yawing偏航, and sideslipping motions.側滑運動 An airplane produces both yawing and rolling moments due to the sideslip angle. This interaction between the roll and the yaw produces the coupled motion. 飛機由於側滑角產生偏航與側滾力矩,側滾與偏航交互作用造成糾結的運動 Three potential lateral dynamic instabilities are of interest to the airplane designer: directional divergence,方向性發散 spiral divergence,螺旋發散 and the so-called Dutch roll oscillation.荷蘭滾震盪
Directional divergence方向性發散 Directional divergence can occur when the airplane lacks directional or weathercock stability.當飛機方向性穩定不夠時會造成方向性發散, If disturbed from its equilibrium state such an airplane will tend to rotate to ever-increasing angles of sideslip.方向性不穩定飛機當它在平衡狀況被擾動時會使得側滑角越來越大 Owing to 由於the side force acting on the airplane, it will fly a curved path at large sideslip angles.由於側向力的作用飛機在大側滑角下飛行路徑會呈弧線狀. For an airplane that has lateral static stability (i.e., dihedral effect ) the motion can occur with no significant change in bank angle.當飛機靜態方向性穩定時,側向力不會造成飛機傾斜角的大改變, Obviously, such a motion cannot be tolerated and readily can be avoided by proper design of the vertical tail surface to ensure directional stability. 顯然地適當設計垂直尾翼以保證方向性穩定性偏航的運動就能避免
Spiral divergence螺旋發散 Spiral divergence is a nonoscillatory divergent motion that can occur when directional stability is large and lateral stability is small.螺旋發散是一非震盪的發散運動,當飛機方向性穩定性好而橫向穩定性差時就會發生 when disturbed from equilibrium, the airplane enters a gradual spiraling motion.飛機進入一螺旋狀旋轉的運動中,當時間增加螺旋會變得越來越陡峭,如果沒有矯正行動將導致高速的螺旋俯衝 The spiral becomes tighter and steeper as time proceeds and can result in a high-speed spiral dive if corrective action is not taken. This motion normally occurs so gradually that the pilot unconsciously corrects for it. 螺旋發散一般是漸漸產生通常飛行員不會意識到要作一些修正導致失事發生
Dutch roll oscillation荷蘭滾震盪 The Dutch roll oscillation is a coupled lateral-directional oscillation that can be quite objectionable to pilots and passengers.荷蘭滾震盪是方向性與橫向震盪的糾結對飛行員與乘客造成極不舒服的感覺 The motion is characterized by a combination of rolling and yawing oscillations that have the same frequency but are out of phase with each other.荷蘭滾震盪運動是結合側滾與偏航的震盪具有相同的頻率但動作不協調 The period can be on the order of 3 to 15 seconds, so that if the amplitude is appreciable the motion can be very annoying.荷蘭滾震盪一個週期約3-15秒如果振幅過大將令人很不舒服
橫向運動方程式的計算 橫航向運動方程式
Example Problem 5.3. Find the lateral eigenvalues of the general aviation airplane described in Chapter 4
在接近海平面以馬赫數M=0.158飛行,氣動力係數為: Solution: 在接近海平面以馬赫數M=0.158飛行,氣動力係數為: A summary of the aerodynamic and geometric data needed for this analysis is included in Appendix B. The stick fixed lateral equations follow: Before we can determine the eigenvalues of the stability matrix A, we first must calculate the lateral stability derivatives. Table 5.l is a summary of the lateral stability derivative definitions.
課本 Matlab Cyβ Cyb = -0.564; Clr = 0.107; Clβ Clb = -0.074; Cnr = -0.125; Cnβ Cnb = 0.071; Cydr = 0.157; Cyp Cyp = 0; Cldr = 0.107; Clp = -0.41; Cndr = -0.072; Cnp = -0.0575; Clda = -0.134; Cyr = 0; Cnda = -0.0035;
Table 5.2 gives a summary of the values of these derivatives for the general aviation airplane.
The resulting characteristic equation is Substituting the lateral stability derivatives into the stick fixed lateral equations yields or The resulting characteristic equation is Solution of the characteristic equation yields the lateral eigenvalues:
1. A slowly convergent or divergent motion, called the spiral mode. In general, we will find the roots to the lateral-directional characteristic equation to be composed of two real roots and a pair of complex roots: 1. A slowly convergent or divergent motion, called the spiral mode. 2. A highly convergent motion, called the rolling mode 3. A lightly damped oscillatory motion having a low frequency, called the Dutch roll mode. The rolling motion usually is highly damped and will reach a steady state in a very short time. The roll motion.
The spiral motion. An unstable spiral mode results in a turning flight trajectory.
The combination of the yawing and rolling oscillations is called the Dutch roll motion because it reminded someone of the weaving motion of a Dutch ice skater.
僅側滑角的微擾 側滑角向右為正 側滾速率向右(順時鐘方向)為正 Bank angle 偏航角速度向右為正 側滾角向右(順時鐘方向)為正 1.A) T=0 時飛機瞬間受到右側風(向右為正)產生0.1徑度的側滑角 風從右側吹來,打在垂直尾翼(Fin)上,而產生向左的側向力,此側向力對機身CG產生一偏航力矩,使機頭向右偏,進而降低側滑角,也就是垂直尾翼有使機身朝向風來方向的功能(如果機頭完全對準風,則β=0)。此功能和測風向的風向雞(weathercock)是一樣的。飛機立即迎向風來的方向往右,造成側滑角減少。同時產生向右的偏航角速度 r B) 機身有一向右的側滑角 產生側滑速度v,此時右翼有下沈,而左翼有上揚的趨勢。因此,右翼的相對風向是由下而上,因此攻角變大;而左翼的風由上而下,攻角變小。右翼攻角大,故升力大,而左翼攻角小,故升力小。由於左右兩翼升力的不平衡,而產生逆時針的側滾力矩向左)為負,同時產生向左側滾角 側滾角向右(順時鐘方向)為正
The combination of the yawing and rolling oscillations is called the Dutch roll motion because it reminded someone of the weaving motion of a Dutch ice skater.
僅側滑角的微擾 側滑角向右為正 側滾速率向右(順時鐘方向)為正 bank angle 偏航角速度向右為正 側滾角向右(順時鐘方向)為正 1.A) T=0 時飛機瞬間受到右側風(向右為正)產生0.1徑度的側滑角 風從右側吹來,打在垂直尾翼(Fin)上,而產生向左的側向力,此側向力對機身CG產生一偏航力矩,使機頭向右偏,進而降低側滑角,也就是垂直尾翼有使機身朝向風來方向的功能(如果機頭完全對準風,則β=0)。此功能和測風向的風向雞(weathercock)是一樣的。飛機立即迎向風來的方向往右,造成側滑角減少。同時產生向右的偏航角速度 r B) 機身有一向右的側滑角 產生側滑速度v,此時右翼有下沈,而左翼有上揚的趨勢。因此,右翼的相對風向是由下而上,因此攻角變大;而左翼的風由上而下,攻角變小。右翼攻角大,故升力大,而左翼攻角小,故升力小。由於左右兩翼升力的不平衡,而產生逆時針的側滾力矩向左)為負,同時產生向左側滾角 側滾角向右(順時鐘方向)為正
飛機的六自由度運動如圖所示。三個垂直軸x,y,z的定義如下: 此三軸所形成的座標系統稱為體軸座標,因為此三軸是固定在機身上隨機身的運動而運動。
僅側滾速率的微擾 側滑角向右為正 側滾速率向右(順時鐘方向)為正 側滾角向右(順時鐘方向)為正 偏航角速度向右為正 t=0當飛機有一順時針的側滾角速度p時,右翼下沈,而左翼上揚。因此,右翼的相對風向是由下而上,因此攻角變大;而左翼的風由上而下,攻角變小。右翼攻角大,故升力大,而左翼攻角小,故升力小。由於左右兩翼升力的不平衡,而產生逆時針的側滾力矩, 阻止原來順時針旋轉的運動。由p所產生的側滾力矩會阻止機體繼續側滾,達到一平衡的姿態。故飛機側滾速率向右(順時鐘方向)減少,同時產生向左的偏航角速度 r 機翼的側滾率p使一邊升力變大,另一邊的機翼升力變小;然而升力大者,阻力也大,因此左右兩側機翼的阻力不同,自然就產生了偏航力矩。同時產生向左的偏航角速度 r。 c) t=0當飛機有一順時針的側滾角速度p時 飛機產生一向右側滾角,同時產生向右的側滑角。 側滾角向右(順時鐘方向)為正 偏航角速度向右為正
僅側滾速率的微擾 側滑角向右為正 側滾速率向右(順時鐘方向)為正 側滾角向右(順時鐘方向)為正 偏航角速度向右為正 t=0當飛機有一順時針的側滾角速度p時,右翼下沈,而左翼上揚。因此,右翼的相對風向是由下而上,因此攻角變大;而左翼的風由上而下,攻角變小。右翼攻角大,故升力大,而左翼攻角小,故升力小。由於左右兩翼升力的不平衡,而產生逆時針的側滾力矩, 阻止原來順時針旋轉的運動。由p所產生的側滾力矩會阻止機體繼續側滾,達到一平衡的姿態。故飛機側滾速率向右(順時鐘方向)減少, 機翼的側滾率p使一邊升力變大,另一邊的機翼升力變小;然而升力大者,阻力也大,因此左右兩側機翼的阻力不同,自然就產生了偏航力矩。同時產生向左的偏航角速度 r。 c) t=0當飛機有一順時針的側滾角速度p時 飛機產生一向右側滾角,同時產生向右的側滑角。 側滾角向右(順時鐘方向)為正 偏航角速度向右為正
僅滾轉角度的微擾 側滑角向右為正 偏航角速度向右為正 當t=0 飛機有一向右側滾角phi =0.1時,右翼下沈,而左翼上揚。因此,右翼的相對風向是由下而上,因此攻角變大;而左翼的風由上而下,攻角變小。右翼攻角大,故升力大,而左翼攻角小,故升力小。由於左右兩翼升力的不平衡,而產生逆時針的側滾力矩, 阻止原來順時針旋轉的運動。故飛機側滾速率向左(逆時鐘方向)增加。 當t=0 飛機有一向右側滾角phi =0.1時,產生側滑速度v,機身有一向右的側滑角beta ,亦產生向右的偏航角速度 r 當t=1 右翼下沈,而左翼上揚。升力一側大,另一側較小,而升力大者亦伴隨大的阻力,升力小者伴隨小的阻力,阻力的不同,而產生偏航力矩。故側滑角beta開始減少 ,向右的偏航角速度 r開始減少 偏航角速度向右為正
僅滾轉角度的微擾 側滑角向右為正 側滾速率向右(順時鐘方向)為正 側滾角向右(順時鐘方向)為正 偏航角速度向右為正 當t=0 飛機有一向右側滾角phi =0.1時,右翼下沈,而左翼上揚。因此,右翼的相對風向是由下而上,因此攻角變大;而左翼的風由上而下,攻角變小。右翼攻角大,故升力大,而左翼攻角小,故升力小。由於左右兩翼升力的不平衡,而產生逆時針的側滾力矩, 阻止原來順時針旋轉的運動。故飛機側滾速率向左(逆時鐘方向)增加。 當t=0 飛機有一向右側滾角phi =0.1時,產生側滑速度v,機身有一向右的側滑角beta ,亦產生向右的偏航角速度 r 當t=1 右翼下沈,而左翼上揚。升力一側大,另一側較小,而升力大者亦伴隨大的阻力,升力小者伴隨小的阻力,阻力的不同,而產生偏航力矩。故側滑角beta開始減少 ,向右的偏航角速度 r開始減少 側滾角向右(順時鐘方向)為正 偏航角速度向右為正
僅滾轉角度的微擾 側滑角向右為正 側滾速率向右(順時鐘方向)為正 偏航角速度向右為正 側滾角向右(順時鐘方向)為正 當t=0 飛機有一向右側滾角phi =0.1徑度時,右翼下沈,而左翼上揚。因此,右翼的相對風向是由下而上,因此攻角變大;而左翼的風由上而下,攻角變小。右翼攻角大,故升力大,而左翼攻角小,故升力小。由於左右兩翼升力的不平衡,而產生逆時針的側滾力矩, 阻止原來順時針旋轉的運動。故飛機側滾速率向左(逆時鐘方向)增加。 當t=0 飛機有一向右側滾角phi =0.1時,產生側滑速度v,機身有一向右的側滑角beta ,亦產生向右的偏航角速度 r 當t=1 右翼下沈,而左翼上揚。升力一側大,另一側較小,而升力大者亦伴隨大的阻力,升力小者伴隨小的阻力,阻力的不同,而產生偏航力矩。故側滑角beta開始減少 ,向右的偏航角速度 r開始減少 偏航角速度向右為正 側滾角向右(順時鐘方向)為正
僅偏航角速度 r的微擾,r(0)=0.1 側滾速率向右(順時鐘方向)為正 側滾角向右(順時鐘方向)為正 當t=0 飛機有一向右偏航角速度 r-0.1時, 左側機翼的相對風速較大,所產生的升力也較大;而右側機翼的相對風速較小,升力也小。由於左右二側升力的不平均,而產生左側翼面上揚,而右側翼面下沈的側滾力矩。因為此力矩的存在,而使得飛機的偏航必定伴隨側滾的發生(向右)。故當t=0時瞬間產生一向右的側滾角phi 與側滾速率p。 B)當t=0 當飛機有一正(向右)的偏航率時,垂直尾翼產生向左 lf.r 的速度,這個速度改變風對於垂直尾翼的入射角,而在合成速度的垂直方向上,形成升力。這個升力對CG產生旋轉,其方向和r相反。因此對於穩定的飛機而言,機身有偏航的角速度時,縱使不去控制它,也會自動產生一相反的偏航力矩(向左),阻止機身持續地偏航。 故當t=0時瞬間產生一向左的側滑角阻止機身持續地偏航。 側滾角向右(順時鐘方向)為正
僅偏航角速度 r的微擾,r(0)=0.1 側滾速率向右(順時鐘方向)為正 側滾角向右(順時鐘方向)為正 當t=0 飛機有一向右偏航角速度 r=0.1時, 左側機翼的相對風速較大,所產生的升力也較大;而右側機翼的相對風速較小,升力也小。由於左右二側升力的不平均,而產生左側翼面上揚,而右側翼面下沈的側滾力矩。因為此力矩的存在,而使得飛機的偏航必定伴隨側滾的發生(向右)。故當t=0時瞬間產生一向右的側滾角phi 與側滾速率p。 B)當t=0 當飛機有一正(向右)的偏航率時,垂直尾翼產生向左 lf.r 的速度,這個速度改變風對於垂直尾翼的入射角,而在合成速度的垂直方向上,形成升力。這個升力對CG產生旋轉,其方向和r相反。因此對於穩定的飛機而言,機身有偏航的角速度時,縱使不去控制它,也會自動產生一相反的偏航力矩(向左),阻止機身持續地偏航。 故當t=0時瞬間產生一向左的側滑角阻止機身持續地偏航。 側滾角向右(順時鐘方向)為正
Lateral Dynamics Stability Three dynamic modes describe the lateral motion of aircraft. These include the relatively uninteresting roll subsidence mode, the Dutch-roll mode, and the spiral mode.對於快速趨於平靜的側滾基態興趣不大 The roll mode consists of almost pure rolling motion and is generally a non-oscillatory motion showing how rolling motion is damped.側滾基態的特徵值是存實數無震盪,基態展現側滾運動如何被高阻尼壓制的現象
The Spiral Mode Of somewhat greater interest is the spiral mode. Like the phugoid motion, the spiral mode is usually very slow and often not of critical importance for piloted aircraft. A 747 has a nonoscillatory spiral mode that damps to half amplitude in 95 seconds under typical conditions, while many airplanes have unstable spiral modes that require pilot input from time to time to maintain heading. 對於螺旋基態較有興趣,與荷蘭側滾基態一樣,螺旋基態由於其動作緩慢對於飛行員來說問題不大。
The Spiral Mode This is a fairly complicated motion, involving a mixture of side force and moments in both the rolling and yawing senses. An initial sideslip will produce yawing and rolling motions, mainly due to the forces acting on the fin. If the resultant rolling motion is dynamically unstable then the sideslip will increase further, resulting in the aircraft slowly diverging into a spiral path. This phenomenon is known as spiral divergence. As with roll damping, it is a non-oscillatory motion.螺旋發散是一非震盪的發散運動,
The Spiral Mode Normally the motion is fairly slow and can be easily controlled by increasing the wing dihedral. This, however, affects other oscillatory motions so a small degree of spiral instability is often tolerated.
The Dutch-roll mode The Dutch-roll mode is a coupled roll and yaw motion that is often not sufficiently damped for good handling. Transport aircraft often require active yaw dampers to suppress this motion.荷蘭側滾基態糾結側滾與偏航的運動通常阻尼都不夠造成飛行品質不佳,民航機需要偏航阻尼器來壓制此基態的運動 High directional stability (Cnb) tends to stabilize the Dutch-roll mode while reducing the stability of the spiral mode. 若飛機方向性穩定性佳使得荷蘭側滾基態穩定,但會降低螺旋基態的穩定性
The Dutch-roll mode Converselylarge effective dihedral (rolling moment due to sideslip, Clb) stabilizes the spiral mode while destabilizing the Dutch-roll motion.相反地有效的上反角效應會穩定螺旋基態但會使得荷蘭側滾基態不穩定 Because sweep produces effective dihedral and because low wing airplanes often have excessive dihedral to improve ground clearance, Dutch-roll motions are often poorly damped on swept-wing aircraft.後掠翼飛機的上反角效應很好,故荷蘭側滾基態的阻尼大都都不夠
Oscillations Whenever a system has positive stability but not enough damping, you can expect to see oscillations.如果系統穩定但阻尼不夠時震盪就會發生 The airplane has only a small amount of stability in the roll-wise direction. You may be wondering why designers don’t fix this problem by increasing the slip-roll coupling. The answer is that they are worried about Dutch roll.飛機滾轉方向的穩定度都不佳,為何設計師不增加側滑與滾轉間之結合以解決此問題,主要原因在於他們擔心荷蘭側滾震盪被激發出來
Analysis of Dutch Roll Dutch roll is a messy combination of rolling, slipping, and yawing. As we shall see, this combined motion is less damped than the pure rolling, slipping, or yawing motions would be. The constant-heading slip exercise is sometimes mistakenly called Dutch roll, but it’s not the same A moderate amount of Dutch roll never killed anybody, but it does tend to provoke nausea引發噁心, especially in passengers.
Analysis of Dutch Roll The Dutch-roll oscillations typically have such a short period (a couple of seconds) that it is a challenge for the pilot to overcome them by working the controls. A spiral dive, on the other hand, develops much more slowly. Therefore if it comes down to a compromise between roll-wise stability and Dutch-roll damping, designers generally increase the damping at the expense of the stability犧牲側滾穩定度以增加荷蘭式側滾阻尼.
SUMMARY In this chapter we examined the lateral modes of motion. The Dutch roll and spiral motions were shown to be influenced by static directional stability and dihedral effect in an opposing manner. The yaw damper is an automatic system that artificially improves the system damping. The increased damping provided by the yaw damper improves both the spiral and Dutch roll characteristics.
基本的繪圖指令 Plot : 最基本的繪圖指令 對 x 座標及相對應的 y 座標進行作圖 範例3-1:plotxy01.m x = linspace(0, 2*pi); % 在 0 到 2π 間,等分取 100 個點 y = sin(x); % 計算 x 的正弦函數值 plot(x, y); % 進行二維平面描點作圖
Plot基本繪圖-1 只給定一個向量 plot(y)和plot(1:length(y), y)會得到相同的結果 linspace(0, 2*pi) 產生從 0 到 2π且長度為 100 (預設值)的向量 x y 是對應的 y 座標 只給定一個向量 該向量則對其索引值(Index)作圖 plot(y)和plot(1:length(y), y)會得到相同的結果
Plot基本繪圖-2 (I) 一次畫出多條曲線 將 x 及 y 座標依次送入plot 指令 範例3-2:plotxy02.m x = linspace(0, 2*pi); % 在 0 到 2 間,等分取 100 個點 plot(x, sin(x), x, cos(x), x, sin(x)+cos(x)); % 進行多條曲線描點作圖
Plot基本繪圖-2 (II) 畫出多條曲線時,會自動輪換曲線顏色 Plot(x,sin(x), x, cos(x), x, sin(x)+cos(x)); 畫出多條曲線時,會自動輪換曲線顏色
Plot基本繪圖-3 (I) 若要以不同的線標(Marker)來作圖 範例3-3:plotxy03.m x = linspace(0, 2*pi); % 在 0 到 2 間,等分取 100 個點 plot(x, sin(x), 'o', x, cos(x), 'x', x, sin(x)+cos(x), '*');
Plot基本繪圖-3 (II)
3-2 圖形的控制 plot 指令,可以接受一個控制字串輸入 用以控制曲線的顏色、格式及線標 使用語法 C:曲線的顏色(Colors) plot(x, y, ‘CLM‘) C:曲線的顏色(Colors) L:曲線的格式(Line Styles) M:曲線所用的線標(Markers)
圖形控制範例-1 (I) 用黑色點線畫出正弦波 每一資料點畫上一個小菱形 範例3-9:plotxy09.m x = 0:0.5:4*pi; % x 向量的起始與結束元素為 0 及 4, % 0.5為各元素相差值 y = sin(x); plot(x, y,‘k:diamond’) % 其中「k」代表黑色,「:」代表點 % 線,而「diamond 」則指定菱形為曲 % 線的線標
圖形控制範例-1 (II)
plot 指令的曲線顏色 Plot指令的曲線顏色字串 曲線顏色 RGB值 b 藍色(Blue) (0,0,1) c 青藍色(Cyan) (0,1,1) g 綠色(Green) (0,1,0) k 黑色(Black) (0,0,0) m 紫黑色(Magenta) (1,0,1) r 紅色(Red) (1,0,0) w 白色 (1,1,1) y 黃色(Yellow) (1,1,0)
plot 指令的曲線格式 plot 指令的曲線格式字串 曲線格式 - 實線(預設值) -- 虛線 : 點線 -. 點虛線
plot 指令的曲線線標 (I) plot 指令的曲線線標字串 曲線符號符號 O 圓形 + 加號 X 叉號 * 星號 . 點號 ^ 朝上三角形 V 朝下三角形
plot 指令的曲線線標 (II) plot 指令的曲線線標字串 曲線符號符號 > 朝右三角形 < 朝左三角形 square 方形 diamond 菱形 pentagram 五角星形 hexagram 六角星形 None 無符號(預設值)
Subplot subplot 在一個視窗產生多個圖形(圖軸) 一般形式為 subplot (m, n, p) 將視窗分為 m ×n 個區域 下一個 plot 指令繪圖於第 p 個區域 p 的算法為由左至右,一列一列
圖軸控制範例-4 (I) 同時畫出四個圖於一個視窗中 範例3-13:plotxy13.m x = 0:0.1:4*pi; subplot(2, 2, 1); plot(x, sin(x)); % 此為左上角圖形 subplot(2, 2, 2); plot(x, cos(x)); % 此為右上角圖形 subplot(2, 2, 3); plot(x, sin(x).*exp(-x/5)); % 此為左下角圖形 subplot(2, 2, 4); plot(x, x.^2); % 此為右下角圖形
圖軸控制範例-4 (II) Subplot(2,2,1) Subplot(2,2,2) Subplot(2,2,3)
plot plot(Y) plot(X1,Y1,...) plot(X1,Y1,LineSpec,...)
plot plot(Y) plot(X1,Y1,...) plot(X1,Y1,LineSpec,...)
Subplot(m,n,p)