丁 承 國立交通大學經營管理研究所教授 成大統計68級 民國103年6月14日 讓我受惠的高微與迴歸 呂金河老師、吳宗正老師 榮退歡送會感言 丁 承 國立交通大學經營管理研究所教授 成大統計68級 民國103年6月14日
前言 64至68年在母系修業期間,呂老師和吳老師是系上教師生力軍,分別負責統計前端之數理基礎課程與後端之應用方法課程。 有幸受教兩位恩師門下,曾修習呂老師之「高等微積分」、「微分方程」、「數值分析」以及吳老師之「迴歸分析」、「變異數分析」、「線性規劃」、「預測方法」等課程,受益無窮!
「高等微積分」與「迴歸分析」可分別作為統計基礎與統計應用之代表性科目。 今日懷抱著感恩的心返回母系參與盛會,與學長學姊分享長久受惠於高微(呂老師)以及迴歸(吳老師)的收穫與心得。 3
呂老師於65學年度「高等微積分」課程所採用之教科書: Widder, D. V. (1961), Advanced Calculus (2nd ed.), Prentice-Hall, Englewood Cliff, NJ. 吳老師於66學年度「迴歸分析」課程所採用之教科書: Neter, J. and Wasserman, W. (1974), Applied Linear Statistical Models, Irwin, Homewood, IL.
高微重要章節 偏微分及其應用 (partial differentiation and its applications) 向量 (vectors) 多重積分 (multiple integrals) 極限與不定式 (limits and indeterminate forms) 無窮級數 (infinite series) 收歛 (convergence) 拉氏變換 (Laplace transform)
倚重高微之重要統計理論與方法 統計推論 (statistical inference) 分配理論 (distribution theory) 大樣本理論 (large-sample theory) 隨機過程 (stochastic process) 貝氏理論 (Bayes theory) 統計計算 (statistical computing) 結構方程模型 (structural equation modeling)
受惠於高微之研究成果示例 1. Ding, C. G. (1992), “Computing the Non-Central 2 Distribu- tion Function,” Journal of the Royal Statistical Society (Series C), Applied Statistics, 41, 478-482. (SCI) 2. Ding, C. G. (1994), “On the Computation of the Non-central Beta Distribution,” Computational Statistics and Data Analysis, 18, 449-455. (SCI) 3. Ding, C. G. (1996), “On the Computation of the Distribution of the Square of the Sample Multiple Correlation Coeffi- cient,” Computational Statistics and Data Analysis, 22, 345- 350. (SCI)
4. Ding, C. G. (1999), “An Efficient Algorithm for Computing Quantiles of the Noncentral Chi-Squared Distribution,” Computational Statistics and Data Analysis, 29, 253-259. (SCI) 5. Jane, T. D. and Ding, C. G. (2009), “On the Multivariate EGARCH Model,” Applied Economics Letters, 16, 1757- 1761. (SSCI) 6. Ding, C. G. and Jane, T. D. (2012), “On the Reliability, Consistency, and Method-Specificity Based on the CT- C(M-1) Model,” Behavior Research Methods, 44, 546-557. (SSCI)
以上研究利用如下之微積分概念與方法: (偏)微分 ((partial) differentiation) 分部積分法 (integration by parts) 積分式之級數表達式 (series representation) Gamma 函數 (gamma function) 上下限 (bounded above/below) 收歛 (convergence) 均值定理 (mean value theorem)
迴歸重要章節 最小平方法 (least squares) 多重迴歸 (multiple regression) 判定係數 (coefficient of determination) 多重共線性 (multicollinearity) 一般線性檢定 (general linear test) 虛擬變數法 (dummy variable technique) 異質變異 (homoscedasticity) 自我相關 (autocorrelation)
迴歸在管理實證研究上的應用 路徑分析 (path analysis) 調節效果檢驗 (testing for moderation) 中介效果檢驗 (testing for mediation) 單、多變量變異數分析 (univariate/multivariate ANOVA) 單、多變量共變數分析 (univariate/multivariate ANCOVA) 時間序列模型 (例如AR, ARMA) 混合效果模式 (mixed-effects models)
實證步驟: 1. 建立研究假設 2. 收集樣本資料 3. 評估信度效度(針對問卷資料) 4. 檢驗研究假設 在「檢驗研究假設」階段常使用迴歸!迴歸早已普遍應用於管理類主流期刊論文。
受惠於迴歸之研究成果示例 1. Chang, K. and Ding, C. G. (1995), “The Influence of Culture on Industrial Buying Selection Criteria in Taiwan and Mainland China,” Industrial Marketing Management, 24, 277-284. (SSCI) 2. Ding, C. G. and Yu, J. S. (2001), “A Simple Approach for Lack- of-fit Test in Regression Without Replicates,” Pan-Pacific Management Review, 4, 23-33. 3. Liu, N. T. and Ding, C. G. (2012), “General Ethical Judgments, Perceived Organizational Support, Interactional Justice, and Workplace Deviance,” International Journal of Human Resource Management, 23, 2712-2735. (SSCI)
4. Ding, C. G. and Lin, C. H. (2012), “How Does Background Music Tempo Work for Online Shopping?” Electronic Commerce Research and Applications, 11, 299-307. (SSCI) 5. Ding, C. G., Wu, C. H., and Chang, P. L. (2013), “The Influence of Government Intervention on the Trajectory of Bank Performance during the Global Financial Crisis: A Comparative Study among Asian Economies,” Journal of Financial Stability, 9, 556-564. (SSCI) 6. Ding, C. G., Wang, H. J., Lee, M. C., Hung, W. C., and Lin, C. P. (2014), “How Does the Change in Investor Sentiment over Time Affect Stock Returns?” Emerging Markets Finance and Trade, 50, Supp. 2, 144-158. (SSCI)
以上研究利用如下之迴歸概念與方法: 多變量複迴歸 (multivariate multiple regression) 殘差分析 (residual analysis) 虛擬變數法 (dummy variable technique) 調節迴歸分析 (moderated regression analysis) 階層迴歸分析 (hierarchical regression analyses) 分段迴歸 (piecewise regression) 自我迴歸 (autoregressive)
受教感言 呂老師以及吳老師所開授之課程,皆有完整且豐富的授課內涵,老師極具教學熱忱,十分重視學生的學習反應,對學生的日常生活也甚表關心,深受學生們的喜愛。 修課期間,如沐春風!修課結束,回味無窮!畢業之後,受惠 !
傳道、授業、解惑是呂老師以及吳老師對學生春 風化雨四十載一貫的付出! 我們何其有幸,深受兩位老師的教導與栽培,師恩浩蕩,永銘於心! 感謝兩位老師對母系無盡的奉獻與貢獻!
祝福 老師 健康、如意!