Differential Equations (DE)

Slides:



Advertisements
Similar presentations
1 Lecture 5 Properties of LTI Systems The Solution of LCCDE.
Advertisements

663 Chapter 14 Integral Transform Method Integral transform 可以表示成如下的積分式的 transform  kernel Laplace transform is one of the integral transform 本章討論的 integral.
大家好,我是 NTOU/MSV 工數教學的 York 老師,今天跟大家講解工程數學的第 一課,一階常微分方程。 一般我們講一階 ODE , first order ordinary differential equation 。這邊的話我 們建議大家要先修過微積分,才能懂得我們要講甚麼。另外也有 PDE.
楊學成 老師 Chapter 1 First-order Differential Equation.
( Numerical Methods for Ordinary Differential Equations )
微積分 精華版 Essential Calculus
化學數學(一) The Mathematics for Chemists (I) (Fall Term, 2006) Department of Chemistry National Sun Yat-sen University.
Chap. 4 Techniques of Circuit Analysis
-Artificial Neural Network- Hopfield Neural Network(HNN) 朝陽科技大學 資訊管理系 李麗華 教授.
Chapter 8 Liner Regression and Correlation 第八章 直线回归和相关
Differential Equations (DE)
XI. Hilbert Huang Transform (HHT)
Signal and Systems 教師:潘欣泰.
工程數學 Chapter 12 PDE 楊學成 老師.
Chapter three the Z Transform Z 变换
3-3 Modeling with Systems of DEs
Euler’s method of construction of the Exponential function
IV. Implementation IV-A Method 1: Direct Implementation 以 STFT 為例
期末考的範圍遠遠多於期中考,要了解的定理和觀念也非常多
Population proportion and sample proportion
積分 (Integration) 查詢的方法
附錄一 Methods of Solving the First Order Differential Equation
7.1 兩曲線間的面積 7.2 體積:圓盤法 7.3 體積:圓柱殼法 7.4 弧長和旋轉面
模式识别 Pattern Recognition
关于数学教育 华东师范大学数学系 张奠宙 永安 4 4.
Differential Equations (DE)
Differential Equations (DE)
非線性規劃 Nonlinear Programming
On Some Fuzzy Optimization Problems
期末考的範圍遠遠多於期中考,要了解的定理和觀念也非常多
控制系統 Control Systems 資工系 潘欣泰.
Stochastic Relationships and Scatter Diagrams
Sampling Theory and Some Important Sampling Distributions
Digital Terrain Modeling
第十一章. 簡單直線迴歸與簡單相關 Simple Linear Regression and Simple Correlation
十一、簡單相關與簡單直線回歸分析(Simple Correlations and Simple Linear Regression )
第二十九單元 方向導數與梯度.
信号与图像处理基础 An Introduction to Signal and Image Processing 中国科学技术大学 自动化系
偏導數 第二十六單元.
II. Short-time Fourier Transform
Chapter 14 Simple Linear Regression
線性一階微分方程與尤拉法 線性一階微分方程式求解 (Linear First-Order Differential Equations)
4-4 Undetermined Coefficients – Superposition Approach
子博弈完美Nash均衡 我们知道,一个博弈可以有多于一个的Nash均衡。在某些情况下,我们可以按照“子博弈完美”的要求,把不符合这个要求的均衡去掉。 扩展型博弈G的一部分g叫做一个子博弈,如果g包含某个节点和它所有的后继点,并且一个G的信息集或者和g不相交,或者整个含于g。 一个Nash均衡称为子博弈完美的,如果它在每.
消費者偏好與效用概念.
Chapter 8 Thermodynamics of High-Speed Gas Flow (第8章 气体和蒸气的流动)
Summary Chapter 2 1. Solution for H-like atom/ion (one-electron system) radial & angular functions of Atomic orbitals, electron cloud, quantum numbers.
Advanced Digital Signal Processing 高等數位訊號處理
XIV. Orthogonal Transform and Multiplexing
Mechanics Exercise Class Ⅰ
96學年度第一學期電機系教學助理課後輔導進度表(一)
公钥密码学与RSA.
Simple Regression (簡單迴歸分析)
weihuang[AT]mail.ustc.EDU.cn Summer 2018, Hefei math/phys
4-1 Linear Differential Equations: Basic Theory
第4章 连续时间傅立叶变换 The Continuous-Time Fourier Transform
Q & A.
國立臺灣海洋大學 機械與機電工程學系 PDE 期末報告
Mechanics Exercise Class Ⅱ
96學年度第二學期電機系教學助理課後輔導進度表(三)(查堂重點)
 隐式欧拉法 /* implicit Euler method */
IV. Implementation IV-A Method 1: Direct Implementation 以 STFT 為例
補充 數值方法 數值方法.
II. Short-time Fourier Transform
Lecture #10 State space approach.
簡單迴歸分析與相關分析 莊文忠 副教授 世新大學行政管理學系 計量分析一(莊文忠副教授) 2019/8/3.
Principle and application of optical information technology
Computer Architecture
Gaussian Process Ruohua Shi Meeting
Presentation transcript:

Differential Equations (DE) 工程數學--微分方程 Differential Equations (DE) 授課者:丁建均 教學網頁:http://djj.ee.ntu.edu.tw/DE.htm (請上課前來這個網站將講義印好) 歡迎大家來修課!

授課者:丁建均 Office: 明達館723室, TEL: 33669652 Office hour: 週一至週五的下午皆可來找我 個人網頁:http://disp.ee.ntu.edu.tw/          E-mail:  jjding@ntu.edu.tw     上課時間: 星期三 第 3, 4 節 (AM 10:20~12:10)  上課地點: 電二143 課本: "Differential Equations-with Boundary-Value Problem", 9th edition, Dennis G. Zill and Michael R. Cullen, 2017. (metric version) 評分方式:四次作業一次小考 15%,   期中考 42.5%,  期末考 42.5%    

注意事項: 請上課前,來這個網頁,將上課資料印好。 http://djj.ee.ntu.edu.tw/DE.htm (2) 請各位同學踴躍出席 。 (3) 作業不可以抄襲。作業若寫錯但有用心寫仍可以有40%~90% 的分數,但抄襲或借人抄襲不給分。 (4) 我週一至週五下午都在辦公室,有什麼問題 ,歡迎同學們來找我

上課日期 Week Number Date (Wednesday, Friday) Remark 1. 2. 3. 4. 5. 9/12 2. 9/19   3. 9/26 4. 10/3 5. 10/10 國慶日 6. 10/17 7. 10/24 8. 10/31 9. 11/7: Midterms 範圍: (Sections 2-2 ~ 4-5) 10. 11/14 11. 11/21 12. 11/28 13. 12/5 14. 12/12 15. 12/19  12/19 小考 16. 12/26 17. 1/2 18. 1/9: Finals  範圍: (Sections 4-6 ~ 12-1)

課程大綱 Introduction (Chap. 1) 解法 (Chap. 2) First Order DE 應用 (Chap. 3) Higher Order DE 應用 (Sec. 5-1) 非線性 (Sec. 4-10, Sec. 5-3, 微方2) 多項式解法 (Chap. 6,微方2) 解法 (Sec. 12-1) Partial DE 直角座標 (Chapter 12,微方2) 圓座標 (Chapter 13,微方2) Laplace Transform (Chap. 7) Transforms Fourier Series (Chap. 11) Fourier Transform (Chap. 14,微方2)

授課範圍 期中考範圍 期末考範圍 Sections 1-1, 1-2, 1-3

Chapter 1 Introduction to Differential Equations 1.1 Definitions and Terminology (術語) Differential Equation (DE): any equation containing derivation (text page 3, definition 1.1) x: independent variable 自變數 y(x): dependent variable 應變數

Note: In the text book, f(x) is often simplified as f notations of differentiation , , , , ………. Leibniz notation , , , , ………. prime notation , , , , ………. dot notation , , , , ………. subscript notation

(2) Ordinary Differential Equation (ODE): differentiation with respect to one independent variable (3) Partial Differential Equation (PDE): differentiation with respect to two or more independent variables

(4) Order of a Differentiation Equation: the order of the highest derivative in the equation 7th order 2nd order

(5) Linear Differentiation Equation: All of the coefficient terms am(x) m = 1, 2, …, n are independent of y. Property of linear differentiation equations: If and y3 = by1 + cy2, then (if g(x) is treated as the input and y(x) is the output)

(6) Non-Linear Differentiation Equation

(7) Explicit Solution (text page 8) The solution is expressed as y = (x) (8) Implicit Solution (text page 8) Example: , Solution: (implicit solution) or (explicit solution)

1.2 Initial Value Problem (IVP) A differentiation equation always has more than one solution. for , y = x, y = x+1 , y = x+2 … are all the solutions of the above differentiation equation. General form of the solution: y = x+ c, where c is any constant. The initial value (未必在 x = 0) is helpful for obtain the unique solution. and y(0) = 2 y = x+2 and y(2) =3.5 y = x+1.5

The kth order differential equation usually requires k initial conditions (or k boundary conditions) to obtain the unique solution. solution: y = x2/2 + bx + c, b and c can be any constant y(1) = 2 and y(2) = 3 y(0) = 1 and y'(0) =5 y(0) = 1 and y'(3) =2 For the kth order differential equation, the initial conditions can be 0th ~ (k–1)th derivatives at some points. (boundary conditions,在不同點) (initial conditions ,在相同點) (boundary conditions,在不同點)

1.3 Differential Equations as Mathematical Model Physical meaning of differentiation: the variation at certain time or certain place Example 1: x(t): location, v(t): velocity, a(t): acceleration F: force, β: coefficient of friction, m: mass

Example 2: 人口隨著時間而增加的模型 A: population 人口增加量和人口呈正比

Example 3: 開水溫度隨著時間會變冷的模型 T: 熱開水溫度, Tm: 環境溫度 t: 時間

大一微積分所學的: 例如: 的解 問題: (1) 若等號兩邊都出現 dependent variable (如 pages 17, 18 的例子) (2) 若order of DE 大於 1 該如何解?

DE Review dependent variable and independent variable PDE and ODE Order of DE linear DE and nonlinear DE explicit solution and implicit solution initial value; boundary value IVP

Chapter 2 First Order Differential Equation 2-1 Solution Curves without a Solution Instead of using analytic methods, the DE can be solved by graphs (圖解) slopes and the field directions: y-axis the slope is f(x0, y0) (x0, y0) x-axis

Example 1 dy/dx = 0.2xy From: Fig. 2-1-3(a) in “Differential Equations-with Boundary-Value Problem”, 8th ed., Dennis G. Zill and Michael R. Cullen.

Example 2 dy/dx = sin(y), y(0) = –3/2 With initial conditions, one curve can be obtained From: Fig. 2-1-4 in “Differential Equations-with Boundary-Value Problem”, 8th ed., Dennis G. Zill and Michael R. Cullen.

Advantage: It can solve some 1st order DEs that cannot be solved by mathematics. Disadvantage: It can only be used for the case of the 1st order DE. It requires a lot of time

Section 2-6 A Numerical Method Another way to solve the DE without analytic methods independent variable x x0, x1, x2, ………… Find the solution of Since approximation sampling(取樣) 前一點的值 取樣間格

Example: dy(x)/dx = 0.2xy y(xn+1) = y(xn) + 0.2xn y(xn )*(xn+1 –xn). dy/dx = sin(x) y(xn+1) = y(xn) + sin(xn)*(xn+1 –xn). 後頁為 dy/dx = sin(x), y(0) = –1, (a) xn+1 –xn = 0.01, (b) xn+1 –xn = 0.1, (c) xn+1 –xn = 1, (d) xn+1 –xn = 0.1, dy/dx = 10sin(10x) 的例子 Constraint for obtaining accurate results: (1) small sampling interval (2) small variation of f(x, y)

(a) (b) (c) (d)

Advantages -- It can solve some 1st order DEs that cannot be solved by mathematics. -- can be used for solving a complicated DE (not constrained for the 1st order case) -- suitable for computer simulation Disadvantages -- numerical error (數值方法的課程對此有詳細探討)

Exercises for Practicing (not homework, but are encouraged to practice) 1-1: 1, 13, 19, 23, 37 1-2: 3, 13, 21, 33 1-3: 2, 7, 28 2-1: 1, 13, 20, 25, 33 2-6: 1, 3