物质向黑洞的塌缩问题:对Birkhoff定理的理解和史瓦西度规的奇异性问题

Slides:



Advertisements
Similar presentations
SAT 作文. SAT 作文与托福作文异同 SAT 作文的评分标准 SAT 作文题目分类 1 ) 人生成功类 2 ) 事物多面性 3 ) 社会历史类 4 ) 自我认知类 5 ) 其他类.
Advertisements

1/67 美和科技大學 美和科技大學 社會工作系 社會工作系. 2/67 社工系基礎學程規劃 ( 四技 ) 一上一下二上二下三上 校訂必修校訂必修 英文 I 中文閱讀與寫作 I 計算機概論 I 體育 服務與學習教育 I 英文 II 中文閱讀與寫作 II 計算機概論 II 體育 服務與學習教育 II.
聖若翰天主教小學 聖若翰天主教小學歡迎各位家長蒞臨 自行分配中一學位家長會 自行分配中一學位家長會.
「健康飲食在校園」運動 2008小學校長高峰會 講題:健康飲食政策個案分享 講者:啟基學校-莫鳳儀校長 日期:二零零八年五月六日(星期二)
國立臺灣海洋大學 辦理各類經費報支應注意事項 會計室 101年4月12日.
基于LAMOST的 致密天体与恒星族的多波段观测 刘继峰 国家天文台 银河系三维结构团组.
脊柱损伤固定搬运术 无锡市急救中心 林长春.
--- Chapter 10 Convection ---
Presented by:李俊達 俞明慧 吳鳳彩
務要火熱服事主.
广义相对论基础 物质告诉时空如何弯曲,时空告诉物质如何运动。 —— 惠勒(J. A. Wheeler)
雅思大作文的结构 Presented by: 总统秘书王富贵.
English Writing Lecture 9
作业现场违章分析.
蒙福夫妻相处之道 经文:弗5:21-33.
Thinking of Instrumentation Survivability Under Severe Accident
The origin of “cosmic acceleration”: void. backreaction
6.5滑坡 一、概述 1.什么是滑坡? 是斜坡的土体或岩体在重力作用下失去原有的稳定状态,沿着斜坡内某些滑动面(滑动带)作整体向下滑动的现象。
模式识别 Pattern Recognition
普通物理 General Physics 13 - Newtonian Gravitation
广义相对论课堂5 引力红移/时间膨胀检验和推论
Journal Citation Reports® 期刊引文分析報告的使用和檢索
Sampling Theory and Some Important Sampling Distributions
本著作除另有註明外,採取創用CC「姓名標示-非商業性-相同方式分享」台灣2.5版授權釋出
EVS-05-27e Action items7 China will provide language for low battery energy warning by next EVS IG meeting.
自引力体系统计物理的新进展 Ping He
Short Version : 6. Work, Energy & Power 短版: 6. 功,能和功率
量子星 Quantum Stars 朱明中 香港中文大學物理系.
机器人学基础 第四章 机器人动力学 Fundamentals of Robotics Ch.4 Manipulator Dynamics
普通物理 General Physics 29 - Current-Produced Magnetic Field
“太极计划”探路者科学目标理论论证会 理论物理研究所 国科大 力学研究所
Turning Trials into Blessing 化苦難為祝福
Einstein’s three most important (among others) legacies
塑膠材料的種類 塑膠在模具內的流動模式 流動性質的影響 溫度性質的影響
普通物理 General Physics 22 - Finding the Electric Field-I
Short Version : 5. Newton's Laws Applications 短版: 5. 牛頓定律的應用
Chapter 8 Thermodynamics of High-Speed Gas Flow (第8章 气体和蒸气的流动)
1-2-1 描述居住地方的自然與人文特性。 了解居住地方的人文環境與經濟活動的 歷史變遷。
Neutron Stars and Black Holes 中子星和黑洞
Chp.4 The Discount Factor
Fundamentals of Physics 8/e 0 – Table of Contents
普通物理 General Physics 21 - Coulomb's Law
行星運動 人類對天體的運行一直充滿著好奇與幻想,各式各樣的傳說與理論自古即流傳於各地。在這些論述中,不乏各式神鬼傳說與命運註解,也包含了許多爭論不休的學術觀點。雖然這些形而上的虛幻傳奇仍然流傳於坊間,但是科學上的爭執卻因牛頓重力理論(law of gravitation)的出現而大致底定。
聖本篤堂 主日三分鐘 天主教教理重温 (94) (此簡報由聖本篤堂培育組製作).
Mechanics Exercise Class Ⅰ
Mendengar Percakapan (1) Pertemuan 5
相關統計觀念復習 Review II.
Chp.4 The Discount Factor
Digging the Fourth Grave For Naturalism – No “Dark Energy” 挖掘自然主义的 第四坟墓- 没有“暗能量” Christopher Chui, PhD Acknowledgment: I am indebted to numerous sources.
Safety science and engineering department
中国科学技术大学计算机系 陈香兰 2013Fall 第七讲 存储器管理 中国科学技术大学计算机系 陈香兰 2013Fall.
Common Qs Regarding Earnings
成才之路 · 英语 人教版 · 必修1 路漫漫其修远兮 吾将上下而求索.
Dual-Aircraft Investigation of the Inner Core of Hurricane Nobert
中微子理论进展报告 周顺 (高能所理论室) 2014年11月21日, 北京.
Inter-band calibration for atmosphere
Chp.4 The Discount Factor
磁单极驱爆超新星等天体能源的统一模型 彭秋和 (南京大学天文系).
Q & A.
Baryon meson.
Nucleon EM form factors in a quark-gluon core model
Mechanics Exercise Class Ⅱ
Chinese Intellectual History
English article read(英文文章閱讀)
基督是更美的祭物 希伯來書 9:1-10:18.
Short Version : 8. Gravity 短版: 8. 重力
句子成分的省略(3).
Summary : 4. Newton's Laws 摘要: 4. 牛頓定律
Principle and application of optical information technology
Gaussian Process Ruohua Shi Meeting
Presentation transcript:

物质向黑洞的塌缩问题:对Birkhoff定理的理解和史瓦西度规的奇异性问题 张双南 高能物理研究所 Liu & Zhang, “Exact solutions for shells collapsing towards a pre-existing black hole”, 2009, Physics Letters B, Volume 679, Issue 2, p. 88-94

Question: Metric in Zone I and III? Schwarzschild metric Reasons for the answer: Birkhoff’s Theorem: the vacuum metric is Schwarzschild for spherically symmetric mass. Gauss’s Theorem: only need to calculate mass or charge inside the given radius Birkhoff’s Theorem can be understood in terms of Gauss’s Theorem. III II Zone I m 2009/9/26

The Real Birkhoff’s Theorem: Metric outside a spherically symmetric body is Schwarzschild 2009/9/26

Common understanding of Birkhoff’s Theorem x Commonly phrased as: metric anywhere is determined by only the total inside mass-energy with spherically symmetric distribution. M This is true in Newtonian gravity, due to the 1/r2 law, but also true in GR only if nothing is outside (the original Birkhoff’s Theorem). 2009/9/26

(1) BH can be formed due to gravitational collapse, for co-moving observer; (2) “BH” is “frozen star” for external observer 2009/9/26

In “George's secret key to the universe”: Publication Date: October 23, 2007 对外部观测者宇航员永远不能进入黑洞 2009/9/26

OS39 solution for self-collapsing dust ball Interior metric is not Schwarzschild ht(R>R0)=1, ht(R<R0)<1 ht also depends on mass outside: a real surprise! but nobody seems to care since it is not in a vacuum. 2009/9/26

A possible consequence of OS39 solution: lensing calculation R0 For lensing calculation, it has been assumed commonly that ht(R>R0)=1 and ht(R<R0)=1 Therefore such approximation under-estimates the light-bending angle, as well as the delay time. Gravitating mass is over-estimated from lensing data. R Also causes additional Shapiro delay 2009/9/26

One dust shell falling to a BH Zone III ht(III)=1 and ht(II)<1 Continuity ht(I)<1 Therefore the metric in Zone I is not Schwarzschild metric of mass m Clearly against common (mis)-understanding. ht(I) depends upon the mass distribution (and location) of the shell, thus varies when the shell falls. Zone II a Zone I a’ BH m 2009/9/26

Numerical example of h(t;I) As the shell falls in, the clock becomes slower and slower gravity becomes stronger and stronger 2009/9/26

More on Birkhoff’s Theorem’s Applicability Zone III Yes Birkhoff Theorem Zone II a’ Zone I No Birkhoff Theorem BH m 2009/9/26

In-falling process of a dust shell Co-moving observer External stationary observer Test particle Conclusions of the external observer: (1) the shell can pass through the event horizon within finite time, except its outer surface ; (2) the shell can never arrive at the singularity. 2009/9/26

Double in-falling shells: mimicking the real astrophysical setting Any matter between shell 1 and the observer a1 a1’ III I V m IV II a2’ a2 m1 m2 2009/9/26

Double shell in-falling process Co-moving observer External stationary observer Conclusion of the external observer: shell 1 passed through the event horizon completely, but still can never arrive at the singularity. The mathematical singularity at r=0 has no physical meaning? 2009/9/26

Detailed in-falling process of shell 1: influence of shell 2 The existence of an external shell does influence the motion of the internal shell This is very different from the common (mis-)understanding of Birkhoff’s Theorem. With shell 2 No shell 2 2009/9/26

我对几种“黑洞”的定义 数学黑洞:点质量(可以带电和角动量)的广义相对论场方程的解 所有质量都在奇点处 物理黑洞:所有的引力质量都在事件视界以内 但是不一定在奇点处 天体物理黑洞:有明确形成机制的物理黑洞 引力塌缩形成的黑洞 我们的研究表明:天体物理黑洞不是数学黑洞 其质量在黑洞视界内部是有分布的,但是在奇点处没有任何质量,彻底避免了黑洞的奇点问题。 在超大质量黑洞内部生活并不可怕。 2009/9/26

Astrophysical black hole My definition: physical BH with astrophysically viable formation mechanism For macroscopic BHs: gravitational collapse of matter towards a singularity seems to be the inevitable fate of a large mass assembly Revent horizon =3 km for the Sun 2009/9/26

总结:几个新的广义相对论效应和理解 球壳内部以及球壳以内的“真空区”度规不是常见的史瓦西形式。 定性影响引力透镜的计算。 随着球壳下落,球壳内“真空区” 的时钟越来越慢,这一变化可以产生物理效果,比如光线穿越暗物质团的时间 广义Shapiro Time Delay。 单球壳:外部观测者看到球壳外边界趋向了视界,内边界在有限时间内穿过了视界。 物质不会在黑洞外部堆积,黑洞可以形成和增长。 双球壳:内球壳在外部观测者的有限时间内穿过了视界 物理宇宙中不存在“冻结星” 。 在外部观测者的有限时间内,物质不可能到达黑洞的“数学‘奇点 物理宇宙中没有黑洞的奇点问题(!)。 2009/9/26

论文中引用(批评)的著名专著、教科书和科普书 C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (1973) S.W. Hawking, G.F.R. Ellis, The large scale structure of space-time (1973) S. Weinberg, Gravitation And Cosmology: Principles and Applications of the General Theory of Relativity (1977) S.L. Shapiro, S. A. Teukolsky, Black Holes, White Dwarfs and Neutron Stars (1983) V.P. Frolov, I.D. Novikov, Black Hole Physics (1998) B.F. Schutz, A first course in general relativity (1990) D. Raine, E. Thomas, Black Holes - An Introduction (2005) J.P. Luminet, Black Holes (1992) K.S. Thorne, Black Holes & Time Warps - Einstein's Outrageous Legacy (1994) M.C. Begelman, M.J. Rees, Gravity's fatal attraction - black holes in the universe (1998) 2009/9/26

论文中致谢的学者 Sumin Tang(唐素敏), Richard Lieu, Kinwah Wu(胡建华), Kazuo Makishima, Neil Gehrels, Masaruare Shibata, Ramesh Narayan, Zheng Zhao(赵铮), Zonghong Zhu(朱宗宏),Chongming Xu(须重明), Remo Ruffini, Roy Kerr and Hernando Quevedo Cubillos. 2007年黄山致密天体物理会议(袁业飞、赖东) 2009年中意相对论天体物理会议(方励之、Ruffini) Liu & Zhang, “Exact solutions for shells collapsing towards a pre-existing black hole”, 2009, Physics Letters B, Volume 679, Issue 2, p. 88-94 2009/9/26