§3.3 多元线性回归模型的统计检验 一、拟合优度检验 二、方程的显著性检验(F检验) 三、变量的显著性检验(t检验) 四、参数的置信区间.

Slides:



Advertisements
Similar presentations
7.1 假设检验 1. 假设检验的基本原理 2. 假设检验的相关概念 3. 假设检验的一般步骤 4. 典型例题 5. 小结.
Advertisements

非线性时间序列模型 一般非线性时间序列模型介绍 条件异方差模型 上海财经大学 统计与管理学院.
3.2.平稳性检验的单位根方法 单位根检验方法 DF检验 ADF检验 PP检验 KPSS检验 ERS检验 NP检验.
第六章 回归分析.
5 多元线性回归分析 §1 一元线性回归分析 §2 多元线性回归分析 §3 最优回归方程的选取 §4 可线性化的非线性回归.
第三章 经典单方程计量经济学模型:多元线性回归模型
第三章 异方差和自相关.
第六章 样本及抽样分布 简单随机抽样: 代表性: 中每一个与所考察的总 体有相同的分布。 2.独立性: 是相互独立的随机变量。
第十章 相关与回归分析 PowerPoint 统计学.
回归分析法预测 (Regression Analysis)
代数方程总复习 五十四中学 苗 伟.
一、能线性化的多元非线性回归 二、多元多项式回归(线性化)
§1 二阶与三阶行列式 ★二元线性方程组与二阶行列式 ★三阶行列式
一、二阶行列式的引入 用消元法解二元线性方程组. 一、二阶行列式的引入 用消元法解二元线性方程组.
第三章 函数逼近 — 最佳平方逼近.
6.6 单侧置信限 1、问题的引入 2、基本概念 3、典型例题 4、小结.
完全随机设计多样本资料秩和检验.
§4.3 多重共线性 Multi-Collinearity.
第六章 多重共线性 (Multi-Collinearity)
第四章 经典单方程计量经济学模型:放宽基本假定的模型
Multicollinearity 一、多重共线性的概念 二、多重共线性的后果 三、多重共线性的检验 四、克服多重共线性的方法 五、例题
第一章 行列式 第五节 Cramer定理 设含有n 个未知量的n个方程构成的线性方程组为 (Ⅰ) 由未知数的系数组成的n阶行列式
第二章 经典单方程计量经济学模型: 一元线性回归模型
量化视角下的豆粕投资机会分析 格林期货研发培训中心 郭坤龙.
第三篇 医学统计学方法. 第三篇 医学统计学方法 医学统计学方法 实习2 主讲人 陶育纯 医学统计学方法 实习2 主讲人 陶育纯 流行病与卫生统计学教研室
计量经济学 第三章 多元线性回归模型.
第一节 引言 第二节 一元线性回归模型 第三节 多元线性回归模型 第四节 虚拟变量回归模型 第五节 非线性回归模型 本章小节 主要内容.
区间估计 Interval Estimation.
统计学期末复习
引子: 国内生产总值增加会减少财政收入吗?
计量经济学 第三章 多元线性回归模型.
第二章 回归模型 法、参数的普通最小二乘估计式及相关性质、对模型的经济意 义检验和统计检验,能应用Eviews软件进行最小二乘估计与统
一元线性回归模型 § 1 回归分析概述 § 2 一元线性回归模型的参数估计 § 3 一元线性回归模型的统计检验
数学实验之 回归分析(1).
第二章 一元线性回归模型.
二、Dickey-Fuller检验(DF检验)
第2章 一元线性回归 2 .1 一元线性回归模型 2 .2 参数 的估计 2 .3 最小二乘估计的性质 2 .4 回归方程的显著性检验
第4章 多元线性回归分析.
第2章 一元线性回归分析 §2.1 :回归分析及回归模型 §2.2 :一元线性模型的参数估计 §2.3 :参数估计值的性质及统计推断
计算机数学基础 主讲老师: 邓辉文.
多元回归分析:估计 y = b0 + b1x1 + b2x bkxk + u 计量经济学导论 刘愿.
第十章 方差分析.
统 计 学 (第三版) 2008 作者 贾俊平 统计学.
第七章 参数估计 7.3 参数的区间估计.
Excel在报表分析中应用 潘雷驰 2019/4/4.
习题 一、概率论 1.已知随机事件A,B,C满足 在下列三种情况下,计算 (1)A,B,C相互独立 (2)A,B独立,A,C互不相容
统 计 学 (第三版) 2008 作者 贾俊平 统计学.
抽样和抽样分布 基本计算 Sampling & Sampling distribution
Partial Differential Equations §2 Separation of variables
6.4不等式的解法举例(1) 2019年4月17日星期三.
实数与向量的积.
9.1 简单线性相关分析 9.2 一元线性回归分析 9.3 多元线性回归与复相关分析 9.4 变量间非线性关系的回归
模型分类问题 Presented by 刘婷婷 苏琬琳.
线 性 代 数 厦门大学线性代数教学组 2019年4月24日6时8分 / 45.
第六章 多重共线性 一、多重共线性的概念 二、实际经济问题中的多重共线性 三、多重共线性的后果 四、多重共线性的检验
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
相关与回归 非确定关系 在宏观上存在关系,但并未精确到可以用函数关系来表达。青少年身高与年龄,体重与体表面积 非确定关系:
第4课时 绝对值.
第三章 两变量线性回归.
第四章 多元线性回归分析.
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
§5.2 抽样分布   确定统计量的分布——抽样分布,是数理统计的基本问题之一.采用求随机向量的函数的分布的方法可得到抽样分布.由于样本容量一般不止2或 3(甚至还可能是随机的),故计算往往很复杂,有时还需要特殊技巧或特殊工具.   由于正态总体是最常见的总体,故本节介绍的几个抽样分布均对正态总体而言.
概率论与数理统计B.
第三节 随机区组设计的方差分析 随机区组设计资料的总平方和可以分解为三项: (10.10).
第十五讲 区间估计 本次课讲完区间估计并开始讲授假设检验部分 下次课结束假设检验,并进行全书复习 本次课程后完成作业的后两部分
第八章 假设检验 8.3 两个正态总体参数的假设检验.
多元线性回归分析.
3.1回归分析的基本思想及其初步应用(四) 高二数学 选修2-3 第三章 统计案例.
一元一次方程的解法(-).
§2 自由代数 定义19.7:设X是集合,G是一个T-代数,为X到G的函数,若对每个T-代数A和X到A的函数,都存在唯一的G到A的同态映射,使得=,则称G(更严格的说是(G,))是生成集X上的自由T-代数。X中的元素称为生成元。 A变, 变 变, 也变 对给定的 和A,是唯一的.
Presentation transcript:

§3.3 多元线性回归模型的统计检验 一、拟合优度检验 二、方程的显著性检验(F检验) 三、变量的显著性检验(t检验) 四、参数的置信区间

一、拟合优度检验 1、可决系数与调整的可决系数 总离差平方和的分解 则

由于 =0 所以有: 注意:一个有趣的现象

但是,现实情况往往是,由增加解释变量个数引起的R2的增大与拟合好坏无关,R2需调整。 可决系数 该统计量越接近于1,模型的拟合优度越高。 问题: 在应用过程中发现,如果在模型中增加一个解释变量, R2往往增大(Why?) 这就给人一个错觉:要使得模型拟合得好,只要增加解释变量即可。 但是,现实情况往往是,由增加解释变量个数引起的R2的增大与拟合好坏无关,R2需调整。

调整的可决系数(adjusted coefficient of determination) 在样本容量一定的情况下,增加解释变量必定使得自由度减少,所以调整的思路是:将残差平方和与总离差平方和分别除以各自的自由度,以剔除变量个数对拟合优度的影响: 其中:n-k-1为残差平方和的自由度,n-1为总体平方和的自由度。

为了比较所含解释变量个数不同的多元回归模型的拟合优度,常用的标准还有: *2、赤池信息准则和施瓦茨准则 为了比较所含解释变量个数不同的多元回归模型的拟合优度,常用的标准还有: 赤池信息准则(Akaike information criterion, AIC) 施瓦茨准则(Schwarz criterion,SC) 这两准则均要求仅当所增加的解释变量能够减少AIC值或AC值时才在原模型中增加该解释变量。

Eviews的估计结果显示: 中国居民消费一元例中: AIC=6.68 AC=6.83 中国居民消费二元例中: AIC=7.09 AC=7.19 从这点看,可以说前期人均居民消费CONSP(-1)应包括在模型中。

二、方程的显著性检验(F检验) 方程的显著性检验,旨在对模型中被解释变量与解释变量之间的线性关系在总体上是否显著成立作出推断。 即检验模型 Yi=0+1X1i+2X2i+  +kXki+i i=1,2, ,n 中的参数j是否显著不为0。 可提出如下原假设与备择假设: H0: 0=1=2=  =k=0 H1: j不全为0

如果这个比值较大,则X的联合体对Y的解释程度高,可认为总体存在线性关系,反之总体上可能不存在线性关系。 F检验的思想来自于总离差平方和的分解式: TSS=ESS+RSS 如果这个比值较大,则X的联合体对Y的解释程度高,可认为总体存在线性关系,反之总体上可能不存在线性关系。 因此,可通过该比值的大小对总体线性关系进行推断。

给定显著性水平,可得到临界值F(k,n-k-1),由样本求出统计量F的数值,通过 根据数理统计学中的知识,在原假设H0成立的条件下,统计量 服从自由度为(k , n-k-1)的F分布 给定显著性水平,可得到临界值F(k,n-k-1),由样本求出统计量F的数值,通过 F F(k,n-k-1) 或 FF(k,n-k-1) 来拒绝或接受原假设H0,以判定原方程总体上的线性关系是否显著成立。

对于中国居民人均消费支出的例子: 一元模型:F=285.92 二元模型:F=2057.3 给定显著性水平 =0.05,查分布表,得到临界值: 一元例:F(1,21)=4.32 二元例: F(2,19)=3.52 显然有 F F(k,n-k-1) 即二个模型的线性关系在95%的水平下显著成立。

2、关于拟合优度检验与方程显著性检验关系的讨论 由 与 可推出: 或

在中国居民人均收入-消费一元模型中, 在中国居民人均收入-消费二元模型中,

因此,必须对每个解释变量进行显著性检验,以决定是否作为解释变量被保留在模型中。 三、变量的显著性检验(t检验) 方程的总体线性关系显著每个解释变量对被解释变量的影响都是显著的 因此,必须对每个解释变量进行显著性检验,以决定是否作为解释变量被保留在模型中。 这一检验是由对变量的 t 检验完成的。

1、t统计量 由于 以cii表示矩阵(X’X)-1 主对角线上的第i个元素,于是参数估计量的方差为: 其中2为随机误差项的方差,在实际计算时,用它的估计量代替:

因此,可构造如下t统计量

给定显著性水平,可得到临界值t/2(n-k-1),由样本求出统计量t的数值,通过 设计原假设与备择假设: H0:i=0 (i=1,2…k) H1:i0 给定显著性水平,可得到临界值t/2(n-k-1),由样本求出统计量t的数值,通过 |t| t/2(n-k-1) 或 |t|t/2(n-k-1) 来拒绝或接受原假设H0,从而判定对应的解释变量是否应包括在模型中。

注意:一元线性回归中,t检验与F检验一致 一方面,t检验与F检验都是对相同的原假设H0:1=0 进行检验; 另一方面,两个统计量之间有如下关系:

在中国居民人均收入-消费支出二元模型例中,由应用软件计算出参数的t值: 包括常数项在内的3个解释变量都在95%的水平下显著,都通过了变量显著性检验。

四、参数的置信区间 参数的置信区间用来考察:在一次抽样中所估计的参数值离参数的真实值有多“近”。 在变量的显著性检验中已经知道: 容易推出:在(1-)的置信水平下i的置信区间是 其中,t/2为显著性水平为 、自由度为n-k-1的临界值。

在中国居民人均收入-消费支出二元模型例中, 给定=0.05,查表得临界值:t0.025(19)=2.093 从回归计算中已得到: 计算得参数的置信区间: 0 :(44.284, 197.116) 1 : (0.0937, 0.3489 ) 2 :(0.0951, 0.8080)

如何才能缩小置信区间? 增大样本容量n,因为在同样的样本容量下,n越大,t分布表中的临界值越小,同时,增大样本容量,还可使样本参数估计量的标准差减小; 提高模型的拟合优度,因为样本参数估计量的标准差与残差平方和呈正比,模型优度越高,残差平方和应越小。 提高样本观测值的分散度,一般情况下,样本观测值越分散,(X’X)-1的分母的|X’X|的值越大,致使区间缩小。