第三章 门电路.

Slides:



Advertisements
Similar presentations
4 场效应管放大电路 4.1 结型场效应管 *4.2 砷化镓金属-半导体场效应管 4.3 金属-氧化物-半导体场效应管
Advertisements

5 场效应管放大电路 5.1 金属-氧化物-半导体(MOS)场效应管 5.2 MOSFET放大电路 5.3 结型场效应管(JFET)
模拟电子电路习题课1 ——主讲教师: 玄玉波.
第3章 分立元件基本电路 3.1 共发射极放大电路 3.2 共集电极放大电路 3.3 共源极放大电路 3.4 分立元件组成的基本门电路.
模拟电子技术基础 李思光.
数字电子技术 Digital Electronics Technology
第3章 集成逻辑门 1. 二极管 - A K 阴极 阳极 + - 正向 P区 N区 反向 导通区 截止区 PN结 A K 击穿区 + 0.5
Digital Circuitry CMOS Gate
CMOS集成电路设计基础 -数字集成电路基础
数字系统设计 Digital System Design
Digital Circuitry CMOS Gate
第三章 门电路.
《数字电子技术基础》(第五版)教学课件 清华大学 阎石 王红
3 半导体三极管及放大电路基础 3.1 半导体三极管(BJT) 3.2 共射极放大电路 3.3 图解分析法 3.4 小信号模型分析法
1.双极性晶体管的结构及类型 双极性晶体管的结构如图1.3.1所示。它有两种类型:NPN型和PNP型。 发射极 集电极 基极 Emitter
§2.3 MOS场效应晶体管 分类 场效应管 Junction type Field Effect Transistor N沟道
Chapter 7 單載子場效電晶體(FET)
CTGU Fundamental of Electronic Technology 8 功率放大电路.
第四章 场效应管放大电路 2017年4月7日.
第2期 第1讲 电源设计 电子科技大学.
概 述 一、门电路的概念 实现基本逻辑运算和常用复合逻辑运算的电子电路 与 非 门 或 非 门 异或门 与或非门 与 非 与 与 门 或 门
半导体 集成电路 学校:西安理工大学 院系:自动化学院电子工程系 专业:电子、微电 时间:秋季学期 2018/12/2.
现代电子技术实验 4.11 RC带通滤波器的设计与测试.
《数字电子技术基础》教学课件 西安工程大学 房晔 王晓华 贺小慧
第四章 门电路 数字集成电路的分类 数字集成电路按其集成度可分为: 按内部有源器件的不同:
半导体三极管 第 2 章 2.1 双极型半导体三极管 2.2 单极型半导体三极管 2.3 半导体三极管电路的基本分析方法
半导体 集成电路 学校:西安理工大学 院系:自动化学院电子工程系 专业:电子、微电 时间:秋季学期.
第16章 逻辑门电路 16.1 最简单的门电路 16.2 集成TTL门电路 16.3 CMOS逻辑门电路.
半导体 集成电路 学校:西安理工大学 院系:自动化学院电子工程系 专业:电子、微电 时间:秋季学期 2019/1/16.
半导体 集成电路 学校:西安理工大学 院系:自动化学院电子工程系 专业:电子、微电 时间:秋季学期.
EE141 脉冲电路3 刘鹏 浙江大学信息与电子工程学院 May 29, 2018.
晶体管及其小信号放大 -场效应管放大电路.
2.5 MOS 门电路 MOS门电路:以MOS管作为开关元件构成的门电路。
半导体 集成电路 学校:西安理工大学 院系:自动化学院电子工程系 专业:电子、微电 时间:秋季学期 2019/2/16.
第四章 双极结型三极管及放大电路基础 姚恒
电子技术基础模拟部分 1 绪论 2 运算放大器 3 二极管及其基本电路 4 场效应三极管及其放大电路 5 双极结型三极管及其放大电路
第一章 半导体材料及二极管.
第二章 双极型晶体三极管(BJT).
逻辑门电路.
第三章 逻辑门电路 实现基本逻辑运算和常用复合逻辑运算的电子电路 与 非 门 或 非 门 异或门 与或非门 与 非 与 与 门 或 门
第 3 章 集成逻辑门电路 概 述 分立元件门电路 TTL 集成逻辑门电路 CMOS 集成逻辑门电路 TTL电路与CMOS电路的接口
第四章 门电路 数字集成电路的分类 数字集成电路按其集成度可分为: 按内部有源器件的不同:
第6章 第6章 直流稳压电源 概述 6.1 单相桥式整流电路 6.2 滤波电路 6.3 串联型稳压电路 上页 下页 返回.
晶体管及其小信号放大 (1).
第7章 集成运算放大电路 7.1 概述 7.4 集成运算放大器.
10.2 串联反馈式稳压电路 稳压电源质量指标 串联反馈式稳压电路工作原理 三端集成稳压器
集成运算放大器 CF101 CF702 CF709 CF741 CF748 CF324 CF358 OP07 CF3130 CF347
2.4 TTL门电路 返回 TTL与非门 集成门电路电气特性及主要参数 抗饱和TTL与非门
晶体管及其小信号放大 (1).
实验二 射极跟随器 图2-2 射极跟随器实验电路.
第二章 双极型晶体三极管(BJT).
《数字电子技术基础》(第五版)教学课件 清华大学 阎石 王红
第 8 章 直流稳压电源 8.1 概述 8.2 稳压管稳压电路 8.3 具有放大环节的串联型稳压电路 8.4 稳压电路的质量指标.
第二章 门电路 本章重点 半导体二极管和三极管(包括双极型和MOS型)开关状态下的等效电路和外特性 TTL电路的外特性及其应用(难点)
3.4 TTL门电路 TTL反相器 1. 电路结构和工作原理 输出级
集成与非门在脉冲电路中的应用 实验目的 1. 了解集成与非门在脉冲电路中 的某些应用及其原理。 2. 学习用示波器观测波形参数与
4 场效应管放大电路 4.1 结型场效应管 *4.2 砷化镓金属-半导体场效应管 4.3 金属-氧化物-半导体场效应管
电路原理教程 (远程教学课件) 浙江大学电气工程学院.
第六讲 数字集成电路 4.1 数字集成电路的分类与特点 退出 TTL数字集成电路
电子控制技术 三极管的工作原理 灵溪第二高级中学.
3.1 数字集成电路的分类 第三章 集成门电路 3.2 TTL 与非门工作原理 3.3 CMOS 门电路 各种系列门电路的性能比较
信号发生电路 -非正弦波发生电路.
第四章 MOSFET及其放大电路.
电工电子技术实验 电工电子教学部.
3.3 TTL 集成逻门 介绍: TTL集成逻辑门电路主要由双极型三极管组成。由于输出极和输入极都是晶体三极管,所以称:晶体管—晶体管逻辑门电路。(Transistor-Transistor Logic ) TTL集成电路特点: 稳定可靠、开关速度高、参数稳定、 电路生产工艺成熟。
第二章 集成门电路 2.1 概述 2.2 TTL 门电路 2.3 CMOS 门电路 2.4 各种集成逻辑们的性 能比较 第2章 上页 下页
第二章 门 电 路 本章的重点: 本章的难点: 1.半导体二极管和三极管(包括双极性和MOS型)开关状态下的等效电路和外特性。
双极型晶体三极管 特性曲线 西电丝绸之路云课堂 孙肖子.
第六章 電晶體放大電路 6-1 電晶體放大器工作原理 6-2 電晶體交流等效電路 6-3 共射極放大電路 6-4 共集極放大電路
9.6.2 互补对称放大电路 1. 无输出变压器(OTL)的互补对称放大电路 +UCC
Presentation transcript:

第三章 门电路

3.1 概述 门电路:实现基本运算、复合运算的单元电路,如与门、与非门、或门 ······ 门电路中以高/低电平表示逻辑状态的1/0

获得高、低电平的基本原理 高/低电平都允许有一定的变化范围

正逻辑:高电平表示1,低电平表示0 负逻辑:高电平表示0,低电平表示1

3.2半导体二极管门电路 半导体二极管的结构和外特性 (Diode) 二极管的结构: PN结 + 引线 + 封装构成 N P

3.2.1二极管的开关特性: 高电平:VIH=VCC 低电平:VIL=0 VI=VIH D截止,VO=VOH=VCC VI=VIL D导通,VO=VOL=0.7V

二极管的开关等效电路:

二极管的动态电流波形:

3.2.2 二极管与门 A B Y 0V 0.7V 3V 3.7V A B Y 1 规定3V以上为1 0.7V以下为0 设VCC = 5V 加到A,B的 VIH=3V VIL=0V 二极管导通时 VDF=0.7V A B Y 0V 0.7V 3V 3.7V A B Y 1 规定3V以上为1 0.7V以下为0

3.2.3 二极管或门 A B Y 0V 3V 2.3V A B Y 1 规定2.3V以上为1 0V以下为0 设VCC = 5V 加到A,B的 VIH=3V VIL=0V 二极管导通时 VDF=0.7V A B Y 0V 3V 2.3V A B Y 1 规定2.3V以上为1 0V以下为0

二极管构成的门电路的缺点 电平有偏移 带负载能力差 只用于IC内部电路

3.3 CMOS门电路 3.3.1MOS管的开关特性 氧化物层 一、MOS管的结构 半导体层 金属层 PN结 S (Source):源极 G (Gate):栅极 D (Drain):漏极 B (Substrate):衬底

以N沟道增强型为例:

开启电压 以N沟道增强型为例: 当加+VDS时, VGS=0时,D-S间是两个背向PN结串联,iD=0 加上+VGS,且足够大至VGS >VGS (th), D-S间形成导电沟道(N型层)

二、输入特性和输出特性 输入特性:直流电流为0,看进去有一个输入电容CI,对动态有影响。 输出特性: iD = f (VDS) 对应不同的VGS下得一族曲线 。

漏极特性曲线(分三个区域) 截止区 恒流区 可变电阻区

截止区:VGS<VGS(th),iD = 0, ROFF > 109Ω 漏极特性曲线(分三个区域) 截止区:VGS<VGS(th),iD = 0, ROFF > 109Ω

恒流区: iD 基本上由VGS决定,与VDS 关系不大 漏极特性曲线(分三个区域) 恒流区: iD 基本上由VGS决定,与VDS 关系不大

可变电阻区:当VDS 较低(近似为0), VGS 一定时, 这个电阻受VGS 控制、可变。 漏极特性曲线(分三个区域) 可变电阻区:当VDS 较低(近似为0), VGS 一定时, 这个电阻受VGS 控制、可变。

三、MOS管的基本开关电路

四、等效电路 OFF ,截止状态 ON,导通状态

五、MOS管的四种类型 增强型 耗尽型 大量正离子 导电沟道

3.3.2 CMOS反相器的电路结构和工作原理 一、电路结构

二、电压、电流传输特性

三、输入噪声容限

结论:可以通过提高VDD来提高噪声容限

3.3.3 CMOS 反相器的静态输入和输出特性 一、输入特性

二、输出特性

二、输出特性

3.3.4 CMOS反相器的动态特性 一、传输延迟时间

二、交流噪声容限 三、动态功耗

三、动态功耗

3.3.5 其他类型的CMOS门电路 一、其他逻辑功能的门电路 1. 与非门 2.或非门

带缓冲极的CMOS门 1、与非门

带缓冲极的CMOS门 2.解决方法

二、漏极开路的门电路(OD门)

三、 CMOS传输门及双向模拟开关 1. 传输门

2. 双向模拟开关

四、三态输出门

三态门的用途

3.5 TTL门电路 3.5.1 半导体三极管的开关特性 双极型三极管的开关特性 (BJT, Bipolar Junction Transistor)

一、双极型三极管的结构 管芯 + 三个引出电极 + 外壳

基区薄 低掺杂 发射区高掺杂 集电区低掺杂

以NPN为例说明工作原理: 当VCC >>VBB be 结正偏, bc结反偏 e区发射大量的电子 b区薄,只有少量的空穴 bc反偏,大量电子形成IC

二、三极管的输入特性和输出特性 三极管的输入特性曲线(NPN) VON :开启电压 硅管,0.5 ~ 0.7V 锗管,0.2 ~ 0.3V 近似认为: VBE < VON iB = 0 VBE ≥ VON iB 的大小由外电路电压,电阻决定

三极管的输出特性 固定一个IB值,即得一条曲线, 在VCE > 0.7V以后,基本为水平直线

特性曲线分三个部分 放大区:条件VCE > 0.7V, iB >0, iC随iB成正比变化, ΔiC=βΔiB。 饱和区:条件VCE < 0.7V, iB >0, VCE 很低,ΔiC 随ΔiB增加变缓,趋于“饱和”。 截止区:条件VBE = 0V, iB = 0, iC = 0, c—e间“断开” 。

三、双极型三极管的基本开关电路 只要参数合理: VI=VIL时,T截止,VO=VOH VI=VIH时,T导通,VO=VOL

工作状态分析:

图解分析法:

四、三极管的开关等效电路 截止状态 饱和导通状态

五、动态开关特性 从二极管已知,PN结存在电容效应。 在饱和与截止两个状态之间转换时,iC的变化将滞后于VI,则VO的变化也滞后于VI。

实际应用中,为保证 VI=VIL时T可靠截止,常在 输入接入负压。 六 、三极管反相器 三极管的基本开关电路就是非门 实际应用中,为保证 VI=VIL时T可靠截止,常在 输入接入负压。 参数合理? VI=VIL时,T截止,VO=VOH VI=VIH时,T截止,VO=VOL

例3.5.1:计算参数设计是否合理 5V VIH=5V VIL=0V 1KΩ 3.3KΩ β=20 VCE(sat) = 0.1V 10KΩ

例3.5.1:计算参数设计是否合理 将发射极外接电路化为等效的VB与RB电路

当 又 因此,参数设计合理

3.5.2 TTL反相器的电路结构和工作原理 一、电路结构 设

二、电压传输特性

二、电压传输特性

二、电压传输特性

需要说明的几个问题:

三、输入噪声容限

试计算门G1能驱动多少个同样的门电路负载。 3.5.3 TTL反相器的静态输入特性和输出特性 例:扇出系数(Fan-out), 试计算门G1能驱动多少个同样的门电路负载。

输入

输出

3.5.4 TTL反相器的动态特性 一、传输延迟时间 1、现象

二、交流噪声容限 当输入信号为窄脉冲,且接近于tpd时,输出变化跟不上,变化很小,因此交流噪声容限远大于直流噪声容限。 (a)正脉冲噪声容限 (b)负脉冲噪声容限

三、电源的动态尖峰电流

2、动态尖峰电流

3.5.5其他类型的TTL门电路 一、其他逻辑功能的门电路 1. 与非门

2. 或非门 3.与或非门

4. 异或门

二、集电极开路的门电路 1、推拉式输出电路结构的局限性 ① 输出电平不可调 ② 负载能力不强,尤其是高电平输出 ③ 输出端不能并联使用 OC门

2、OC门的结构特点

OC门实现的线与

3、外接负载电阻RL的计算

3、外接负载电阻RL的计算

3、外接负载电阻RL的计算

三、三态输出门(Three state Output Gate ,TS)

三态门的用途

2.4.5 TTL电路的改进系列 (改进指标: ) 一、高速系列74H/54H (High-Speed TTL) 电路的改进 (1)输出级采用复合管(减小输出电阻Ro) (2)减少各电阻值 2. 性能特点 速度提高 的同时功耗也增加

二、肖特基系列74S/54S(Schottky TTL) 电路改进 采用抗饱和三极管 用有源泄放电路代替74H系列中的R3 减小电阻值 2. 性能特点 速度进一步提高,电压传输特性没有线性区,功耗增大

三、低功耗肖特基系列 74LS/54LS (Low-Power Schottky TTL) 四、74AS,74ALS (Advanced Low-Power Schottky TTL) · · · 2.5 其他类型的双极型数字集成电路* DTL:输入为二极管门电路,速度低,已经不用 HTL:电源电压高,Vth高,抗干扰性好,已被CMOS替代 ECL:非饱和逻辑,速度快,用于高速系统 I2L:属饱和逻辑,电路简单,用于LSI内部电路