第二节 植物遗传转化技术
The Lab Steps And this slide illustrates those steps.
植物遗传转化技术 直接基因转移技术 生物介导的转化
一、生物介导的转化法 农杆菌(Agrobacterium )介导 病毒介导
1. History of Agrobacterium-mediated transformation 1907: 发现农杆菌是植物致瘤的起因 1974:发现农杆菌中有Ti或Ri质粒 1983:在Miami召开的“植物和动物分子遗传学”冬季讨论会上,有三个报告: Van Montagu&Schell(比利时根特大学)、Fraley(Monsanto):将T-DNA上的致瘤基因以外源基因取代,转化得到可育植株 Chilton(Washington Univ.):用NPTII转入植物细胞,抗Km 1986:transformation of leaf disc (Horsch)
Agrobacterium In 1907, it was found to cause tumor Soil bacterium A. tumefaciens: tumor A. rhizobium: root
Agrobacterium tumefaciens, a natural plant genetic engineer A natural DNA delivery system Soil bacterium, related to Rhizobium Infects many plant species causes crown galls (tumors) on many dicots Infection occurs at wound sites Infected Tobacco w/teratoma
Agrobacterium tumefaciens and crown galls Gall on stem Gall on leaf
complex bacterium – genome has been sequenced; 4 chromosomes with ~ 5500 genes
2. Why crown gall is formed ?
Tumor characteristics hormone (auxin & cytokinin) levels altered, explains abnormal growth synthesize a unique amino acid, called “opine” Octopine(章鱼碱) Nopaline (derived from arginine) Agropine (derived from glutamate) Specific opine depends on the strain of A. tumefaciens
Elucidation of the TIP (tumor-inducing principle) It was recognized early that virulent strains could be cured of virulence, and that cured strains could regain virulence when exposed to virulent strains; suggested an extra-chromosomal element. Large plasmids were found in A. tumefaciens and their presence correlated with virulence: called tumor-inducing or Ti plasmids.
Structure of A. tumefaciens
Ti Plasmid
Ti plasmid 控制tumor诱发因子的2个区段 vir (virulence):36 kb, 毒性区段,编码几个致瘤基因(onc). T-DNA区段:12-24 kb, tumor形成时,从Ti质粒进入植物细胞中的DNA片段 Opine合成酶基因 生长素合成酶合成基因 细胞分裂素合成基因 Left and right border (LB\RB):T-DNA左右两侧各有一段25bp的重复序列,在T-DNA的整合中起重要作用 Ori区(origin of replication):该区段基因调控Ti质粒的自我复制,故称之为复制起始区。 T-DNA region Auxin Cytokinin Opine Left border Right border 12-24 kbp vir genes Opine catabolism ori
3. 创伤诱导分子 植物细胞在受伤后产生信号分子,即创伤诱导分子 是一类可溶性的小分子酚类化合物 乙酰丁香酮(acetosyringone,AS)、羟基乙酰丁香酮(acetosyringone,OH-AS) A.t: recognition and chemotaxis (趋化性) toward AS 高浓度AS可使农杆菌的vir活化及表达
4. Vir (virulent) genes Transfer the T-DNA to plant cell acetosyringone (AS) (a flavonoid) released by wounded plant cells activates vir genes 7 operons: virA,B,C,D,E,G, H (A-E are operons with multiple ORFs), span about 30 kb of Ti plasmid, 24 genes, related to cutting and transfer of T-DNA
How T-DNA is integrated into plant? 植物产生创伤信号分子 VirB2: provides energy VirD2/VirE2:有核靶毓,引导T-DNA进入植物基因组 双因子调控体系 virA基因激活 virG基因激活 virD1基因激活(松) virD2基因激活(T-链) virE2基因激活 T-complex
Tumor induction T-DNA transfer: T-DNA被加工切下、复制、越过细菌膜及转移到植物细胞并整合植物基因组的全过程。 T-DNA和vir基因参与,T-DNA上的基因与T-DNA的转移及整合有关,因为它不编码T-DNA转移的产物。
Transfer of T-DNA from Agrobacterium to plant cell wound ‘signal’ Plant cell T-DNA Nucleus Single-stranded copy of T-DNA (protected by ssDNA binding protein)
T-DNA into plant cells
T-DNA integration implies Foreign genes can be transferred into plants if they were put in the region of T-DNA
But Nature’s Agrobacterium Has Problems Infected tissues cannot be regenerated (via tissue culture) into new plants Why? Phytohormone balance incorrect regeneration Solution? Transferred DNA (T-DNA) modified by Removing phytohormone genes Early on it was known that tissues infected with Agrobacterium could not be coaxed to regenerate new plants. Soon it was realized that the plant hormone balance was not correct. To over come this effect, the genes encoding the phytohormones were removed. Once removed, plant tissues infected with the modified Agrobacterium could produce the regenerated plant. With this realization, it was a simple step to envision how to deliver genes of interest into a plant: include these genes in the cassette. Retaining essential transfer sequences Adding cloning site for gene of interest
总结:Ti质粒特点 Ti质粒具有5个主要功能区域:T-DNA、质粒转移 (plasmid transfer)、冠瘿碱代谢 (opine catabolism)、复制原点 (oir)和毒性区域 (vir)。 T-DNA中直接参与转移并整合到植物染色体上的序列,仅是T-DNA两端与其他序列交界处的25bp不完全直接重复 (imperfect direct repeat),右端的这段序列称为右界,左端的序列称为左界。 T-DNA内的致瘤细胞诱导根瘤细胞,由这类细胞不能再生成植株。 vir的毒性基因是T-DNA转移所必需的。
二、转化载体Transformation vector Modified from Ti-plasmid Ti质粒是约200~500kb的环状DNA分子,很难用作DNA克隆载体进行操作。 根据Ti质粒的特点,现已构建成以下两套质粒衍生的载体系统,广泛用作植物基因工程中的载体 共整合载体Co-integration vector 双载体Binary vector
1. 卸甲载体Disarmed vector Ti-based plasmids lacking tumorigenic functions T-DNA区域内的所有基因与转移无关,所以将致瘤基因全部缺失即卸甲(disarm)后,将细菌抗生素的抗性基因或其他序列插入到这个区域,形成的T-DNA仍可将RB至LB内的序列转移并整合到植物基因组。 主要是提供Vir基因功能,激活处于反式位置上的T-DNA的转移
Co-integration plasmid 一元载体系统A plasmid based on pBR322 used to clone gene of interest A Ti-based vector: pGV3850 (LB, RB, most of T-DNA replaced by pBR322) The former integrated into the latter
2. 共整合载体 两个质粒,一个用作克隆外源基因,另一个带有毒性基因。 与双元载体的主要区别是这两个质粒具有一段同源序列,它们在根瘤土壤杆菌中经过重组整合成一个载体,故称共整合载体。
co-integrated vector的特点 由两个质粒(E.coli plasmid & Ti plasmid)重组而成,分子量较大 共整合的形成频率与两个质粒的重组频率有关,相对较低 必须用Southern 杂交或PCR对较大的共整合体质粒进行检测 构建比较困难 中间表达载体通过结合转移法或三亲杂交转移法导入农杆菌
3. 双元载体系统 包括两个质粒,一个是带有T-DNA的微型质粒(双元Ti载体),一个是带有Vir区的辅助质粒。 将去除致瘤基因的T-DNA区从Ti质粒中分离,放置在一个能在农杆菌和大肠杆菌中复制的穿梭质粒中。这个穿梭载体称为双元Ti载体。vir区则存在于一个已经除去T-DNA的Ti质粒中,在农杆菌中作为辅助质粒,通过反式激活使T-DNA转移到植物细胞基因组中。
binary vector 包括mini-Ti质粒(T-DNA边界,缺失Vir区)和helper Ti质粒(含有Vir区缺失T-DNA边界,相当于co-integrated vector 的disarmed Ti质粒) mini-Ti质粒:pBin19,pCAMBIA系列 helper Ti质粒:EHA105,LBA4404(pAL4404) mini-Ti质粒可通过液氮速冻或电转化法转入含有helper Ti质粒的农杆菌 Mini plasmid helper Ti
Binary vector 具有两个质粒 一个是用于克隆外源基因片段的克隆质粒,可在大肠杆菌及根瘤土壤杆菌中复制,容易操作,并可在二者间转移,也是一种穿梭质粒。在T-DNA序列外,还有细菌选择标记基因,在T-DNA的LB至RB内有一个多克隆位点及植物选择标记基因。Mini-plasmid 另一个质粒是非致病Ti质粒,该质粒没有T-DNA序列,具有Ti质粒的毒性基因,毒性基因表达的产物以反式调控方式控制穿梭质粒上T-DNA的转移。将两个质粒分别导人根癌土壤杆菌后,经根癌土壤杆菌介导,克隆质粒中的T-DNA转移到植物基因组中。 Helper plasmid
共整合和双元载体 微型质位转入含有辅助质粒农杆菌:是直接用纯化的微型Ti质粒转化速冻的根 癌农杆菌感受态细胞 采用三亲交配方法,三亲交配由含微型Ti质粒的E. Coli,含有助动质粒pRK2013的E.Coli和含有辅助Ti质粒的农杆菌组成。三细菌混合后产生菌间的接合转导。pRK2013可移入农杆菌,但由于不能自主复制而被丢失,其进入含有微型Ti质粒的E. Coli后,可促进微型Ti质粒一起或分别转移入农杆菌中。但由于 pRK2013的“自杀”特性,最终在农杆菌中剩下微型Ti质粒和Ti质粒双元载体,此农杆菌可直接用于植物细胞转化。
4. 农杆菌的培养 LB(Luria-Bertani)最广泛、最普通细菌基础培养基, LB来源lysogeny broth,即溶菌肉汤,发明人贝尔塔尼(Giuseppe Bertani) , 胰蛋白胨(Tryptone) 10g/L+酵母提取物(Yeast extract) 5g/L+氯化钠(NaCl) 5g/L(NaOH调节该培养基的pH7.4) YEB(发根农杆菌用) Beef extract (牛肉浸膏) 5g/L Yeast extract (酵母膏) 1g/L Peptone (蛋白胨) 5g/L Sucrose (蔗糖) 5g/L MgSO4.7H2O 0.4g/100ml Agar (琼脂) 1.5g/100ml pH 7.4 Minimal培养基 固体平板或液体培养
5. 发根农杆菌 发根农杆菌(Agrobaterium rhizogenis) 为革兰氏阴性菌。发根农杆菌侵染植物细胞产生许多不定根,这种不定根生长迅速,不断分枝。 Ri质粒转化有许多优点:①Ri质粒可以不经“解除武装”进行转化,发根能够再生植株;②发状根是一个单细胞克隆,可以避免嵌合体;③Ri质粒和Ti质粒可以配合使用,建立双元载体系统,拓展了两种质粒应用范围;④发根适用于进行离体培养,很多植物的发根在离体培养条件下都有原植物次生代谢产物合成能力。
6. 病毒介导法 病毒载体是新出现的一种用于植物转化的载体。植物病毒转基因系统是将外源基因插入到病毒基因组中,通过病毒对植物细胞的感染而将外源基因导入植物细胞。目前正在研究发展的植物病毒载体系统有2种: 单链RNA植物病毒载体系统 双链DNA植物病毒载体系统
三、DNA直接导入基因转化 不依赖农杆菌载体和其他生物媒体,将特殊处理的裸露的DNA直接导入植物细胞,实现基因转化的技术。常用的DNA直接转化技术根据其原理可分为化学法和物理法两大类。
1. 物理法诱导DNA直接转化 物理转化方法是基于许多物理因素对细胞膜的影响,或通过机械损伤直接将外源DNA导入细胞。 它不仅能够以原生质体为受体,还可以直接以植物细胞乃至组织、器官作为靶受体,因此比化学法更具有广泛性和使用性。 常用的物理方法有基因枪法、电激法、超声波法、显微注射法。
(1) 基因枪法 微弹轰击法microprojectitle bombardment: 粒子轰击法particle bombardment 高速粒子喷射技术high-velocity particle microprojection 弹道微靶点射击ballistic microtargeting, ballistics 是一种将载有外源DNA的金属(钨或金)经驱动后通过真空小室进入靶组织的一种遗传转化技术
History 1987: Klein等报道用微弹轰击法将DNA带入活细胞 1987: 康乃尔大学的Sanford等研制出火药引爆的基因枪 1988:McCabe等转化大豆获得成功 1990: 美国杜邦公司推出商品基因枪PDS-1000
Principles 外源DNA包被在微小的金粒或钨粒表面,然后在高压的作用下微粒被高速射入受体细胞或组织,微粒上的外源DNA进入细胞后,整合到植物染色体上,得到表达,从而实现基因的转化。 DNA微粒载体的制备原理:CaCl2对DNA沉淀作用,亚精胺具有粘附作用。将这些化合物与DNA混合后与钨粉或金粉混合,吹干后,则DNA沉淀在载体颗粒上
Bullet/particle
High pressure gas 氦气、氢气、氮气等,把载有DNA的钨(金)粉喷洒在一张微粒载片上(macrocarrier),电极间悬滴着微水滴,在压缩空气的冲击下,微水滴雾状喷射,驱动载片。当载片受阻于金属筛网时,载有DNA的钨(金)粉继续下行。
PDS-1000/He Sample Prep DNA is precipitated onto the microcarriers using calcium chloride and spermidine, washed and resuspended in ethanol. The DNA-coated microcarriers are spread over the central 1cm of a macrocarrier using a pipette tip. This is approx the size of the hole in the macrocarrier holder. Prior to loading the disk it is placed in a pre-sterilized macrocarrier holder and these are placed with desiccant in a petri dish. This provides a stable platform and a low humidity environment for the ethanol to uniformly evaporate from the microcarriers. If excess moisture is around the DNA rehydrates and returns to solution, leaving the gold. The terms microcarrier to describe the microparticles and macrocarrier to describe the plasic disk can be confusing.
PDS-1000/He Rupture Disk The selected rupture disk is briefly wetted in isopropanol and placed in the recess of the rupture disk retaining cap. The rupture disk retaining cap is then screwed onto the gas acceleration tube and tightened using the torque wrench. A disk should always be in place when the retaining cap is tightened to prevent damaging the metal surfaces. The system should be fired once without a sample to fill the tubing with helium.
PDS-1000/He Macrocarrier Assembly 2 3 4 A sterile stopping screen is placed on the stopping screen support of the macrocarrier assembly. The prepared macrocarrier and holder is seated inverted on the top rim of the nest. This means that the dried microcarriers will be facing down towards the stopping screen. Replace the cover lid and place the assembly into the chamber in the top location below the Rupture disk retaining cap.
PDS-1000/He Loading Target Cells Place the sample on the target shelf at the chosen shelf position. Close and latch the chamber door.
PDS-1000/He Bombardment This schematic shows the system set up as described in the last few slides. To carry out the bombardment, turn on the vacuum source and use the VAC button to draw the required volume. This needs to be a minimum of 5 inches of mercury as the system will not fire below this. The fire switch is illuminated when this pressure is reached. To fire, hold the fire button. The vacuum will build until the rupture disk bursts with a small pop. The vacuum is then released and the bombarded sample removed.
Advantages of Particle Delivery simple, rapid, versatile technique targeted intracellular gene delivery independent of cell type uses small amounts of DNA delivers single or multiple genes no carrier DNA needed can deliver large DNA fragments no extraneous genes or proteins delivered requires little manipulation of cells high reproducibility So what are the advantages of using Particle Delivery as a technique?
基因枪转化的操作步骤 靶细胞或组织的预处理 微粒子弹的制备 装备基因枪 轰击 过渡培养 进行筛选培养或直接分化再生植株
(2) 电激法介导基因转化 电激法是利用高压电脉冲作用在原生质体膜上“电激穿孔”,形成可逆的瞬间通道,从而促进外源DNA的摄取。 此法在动物细胞中应用较早并取得很好效果,现在这一方法已被广泛用于各种单、双子叶植物中,特别是在禾谷类作物中更有发展潜力。
(3) 超声波介导基因转化 超声波基因转化的基本原理是利用低声强脉冲超声波的物理作用,击穿细胞膜造成通道,使外源DNA进入细胞。 优点:操作简单,设备便宜,不受宿主范围限制,转化率高。但该转化系统尚待进行深入研究,使之完善。
(4) microinjection介导基因转化 其原理比较简单,是利用显微注射仪将外源DNA直接注入受体细胞质或细胞核中。显微注射的一个重要问题是必须把受体细胞进行固定。 转化的成功率高 可以省去选择性标记的麻烦
2、化学诱导DNA直接转化 化学诱导DNA直接转化是以原生质体为受体,借助于特定的化学物诱导DNA直接导入植物细胞的方法。目前主要有2种方法: PEG介导基因转化 脂质体介导基因转化
(1) PEG介导基因转化 PEG法的主要原理是化合物聚乙二醇在高pH值条件下诱导原生质体摄取外源DNA分子。 PEG通过电荷之间的相互作用,与DNA形成紧密复合物,植物细胞通过内吞作用吸收这些复合物,一般PEG浓度较低时,不会对原生质体造成伤害。
(2) liposome介导基因转化 用脂类化学包裹DNA成球体,通过植物原生质体的吞噬或融合作用把内含物转入受体细胞。 脂质体是由磷脂组成的膜状结构,用它包装外源DNA分子,然后与植物原生质体共保温,脂质体与原生质体膜结构之间发生相互作用,而后通过细胞的内吞作用而将外源DNA导入植物原生质体。