第六章 概述 一、矩形脉冲的基本特性 1. 矩形脉冲的二值性 二进制数字信号 矩形脉冲 高、低电平 1、0 2. 矩形脉冲的特性参数

Slides:



Advertisements
Similar presentations
第二章 逻辑门电路 内容概述 第一节 标准TTL与非门 第二节 其它类型TTL门电路 第三节 ECL逻辑门电路 第四节 I2 L逻辑门电路
Advertisements

第8章 信号的发生 和信号的转换 8.1 电压比较器 8.2 非正弦波发生器 8.3 正弦波发生器 8.4 精密整流电路.
一、单稳态触发电路构成 (一)微分型单稳态触发器 §6.4 单稳态触发电路
触发器实现波形 整形及脉冲延时的研究 实验目的 实验原理 实验内容 注意事项.
第六章 脉冲波形 的产生和整形 本章的重点: 本章的难点:
第二章 门电路 本章重点及要求: 1、理解半导体二极管和三极管的开关特性;2、掌握分立元件组成的“与、或、非”门电路;3、理解TTL集成门电路和CMOS集成门电路;4、掌握集成门电路的逻辑功能和正确使用方法。5、理解TTL与非门的电压传输特性、输入输出特性等参数。 § 2—1 概述 一、逻辑门电路 门电路----能完成基本逻辑运算和复合逻辑运算的单元电路。
第20章 门电路和组合逻辑电路 20.1 脉冲信号 20.2 基本门电路及其组合 20.3 TTL门电路 20.4 CMOS门电路
脉冲电路 刘鹏 浙江大学 信息与电子工程学院 May 18, 2017 数字系统设计I
EE141 脉冲电路3 刘鹏 浙江大学信息与电子工程学院 May 25, 2017.
数字系统设计I 脉冲电路2 刘鹏 浙江大学信息与电子工程学院 May 23, 2017.
数字系统设计 Digital System Design
数字系统设计 Digital System Design
第八章 波形的产生与变换电路 8.1 正弦波振荡的基本原理 8.2 RC正弦波振荡电路 8.3 LC正弦波振荡电路 8.4 石英晶体振荡电路
EE141 脉冲电路3 刘鹏 浙江大学信息与电子工程学院 May 25, 2017.
第 7 章 信号产生电路 7.1 正弦波振荡电路 7.2 非正弦波信号产生电路 7.3 锁相频率合成电路 第 7 章 小 结.
现代电子技术实验 4.11 RC带通滤波器的设计与测试.
第四章 门电路 数字集成电路的分类 数字集成电路按其集成度可分为: 按内部有源器件的不同:
6.4 同步时序逻辑电路的设计方法 简单同步时序逻辑电路的设计
数字系统设计I 脉冲电路2 刘鹏 浙江大学信息与电子工程学院 May 23, 2017.
实验四 组合逻辑电路的设计与测试 一.实验目的 1.掌握组合逻辑电路的设计 方法 2.学会对组合逻辑电路的测 试方法.
半导体 集成电路 学校:西安理工大学 院系:自动化学院电子工程系 专业:电子、微电 时间:秋季学期 2019/1/16.
第17章 集成运算放大器 17-1 集成运算放大器简介 17-2 运算放大器的应用 17-3 集成功率放大器
EE141 脉冲电路3 刘鹏 浙江大学信息与电子工程学院 May 29, 2018.
2.5 MOS 门电路 MOS门电路:以MOS管作为开关元件构成的门电路。
实验六 积分器、微分器.
第二章 双极型晶体三极管(BJT).
逻辑门电路.
确定运放工作区的方法:判断电路中有无负反馈。
实验五 555时基电路及其应用 一、实验目的 1、熟悉555电路的工作原理及其特点 2、掌握555电路的基本应用.
第20章 门电路和组合逻辑电路 20.1 脉冲信号 20.2 基本门电路及其组合 20.3 TTL门电路 20.4 MOS门电路
第四章 门电路 数字集成电路的分类 数字集成电路按其集成度可分为: 按内部有源器件的不同:
第6章 第6章 直流稳压电源 概述 6.1 单相桥式整流电路 6.2 滤波电路 6.3 串联型稳压电路 上页 下页 返回.
第四章 MCS-51定时器/计数器 一、定时器结构 1.定时器结构框图
10.2 串联反馈式稳压电路 稳压电源质量指标 串联反馈式稳压电路工作原理 三端集成稳压器
数字电子技术 Digital Electronics Technology
集成运算放大器 CF101 CF702 CF709 CF741 CF748 CF324 CF358 OP07 CF3130 CF347
晶体管及其小信号放大 -单管共射电路的频率特性.
大学物理实验 用双踪示波器观测电容特性与磁滞回线 同济大学浙江学院物理教研室.
晶体管及其小信号放大 -单管共射电路的频率特性.
第七章 波形的发生和信号的转换.
第8章 脉冲波形的产生与整形 8.1 概述 定时器及其应用 8.3 集成单稳态触发器 8.4 集成逻辑门构成的脉冲电路.
《数字电子技术基础》(第五版)教学课件 清华大学 阎石 王红
实验2.9 RC一阶电路的响应测试 一、实验目的 2. 学习电路时间常数的测量方法。 3. 掌握有关微分电路和积分电路的概念。
实验二 射极跟随器 图2-2 射极跟随器实验电路.
第 13 章 触发器和时序逻辑电路 13.1 双稳态触发器 13.2 寄存器 13.3 计数器 定时器及其应用.
第六章 脉冲波形的产生与整形 6.1 集成555定时器 6.2 施密特触发器 6.3 多谐振荡器 6.4 单稳态触发器.
实验四 555集成定时器的应用-2.
实验六 触发器逻辑功能测试 一、实验目的 二、实验仪器 1、熟悉并掌握RS、D、JK触发器的构成、工作原理和 功能测试方法。
长春理工大学 电工电子实验教学中心 数字电路实验 数字电路实验室.
结束 放映 5.2 单稳态触发器 用门电路构成的单稳态触发器 集成单稳态触发器及其应用 返回 2019/5/6.
2.6 常用集成门电路芯片及其应用 TTL集成门电路系列 CMOS系列门电路.
第八章 脉冲产生与整形 波形变换电路 脉冲产生电路 施密特触发器 集成定时器 小结.
现代电子技术实验 数字频率计 实验目的 方案设计 单元电路 调整测试.
《数字电子技术基础》(第五版)教学课件 清华大学 阎石 王红
集成与非门在脉冲电路中的应用 实验目的 1. 了解集成与非门在脉冲电路中 的某些应用及其原理。 2. 学习用示波器观测波形参数与
第4章 触发器.
概述 一、基本要求 1. 有两个稳定的状态(0、1),以表示存储内容; 2. 能够接收、保存和输出信号。 二、现态和次态
确定运放工作区的方法:判断电路中有无负反馈。
实验一 单级放大电路 一、 实验内容 1. 熟悉电子元件及实验箱 2. 掌握放大器静态工作点模拟电路调试方法及对放大器性能的影响
实验八 555集成定时器的应用 实验目的 实验原理 实验内容 注意事项.
现代电子技术实验 同步计数器及其应用研究 实验目的 实验原理 实验内容 注意事项.
第七章 脉冲电路 7.1 概述 7.2 集成555 定时器 7.3 施密特触发器 7.4 单稳态触发器 7.5 多谐振荡器.
信号发生电路 -非正弦波发生电路.
第12章 555定时器及其应用 一. 555定时器的结构及工作原理 1. 分压器:由三个等值电阻构成
第7章 波形产生与信号变换电路 7.1 正弦波产生电路 7.2 电压比较器 7.3 非正弦波产生电路 7.4 信号变换电路 7.5 辅修内容
第二章 集成门电路 2.1 概述 2.2 TTL 门电路 2.3 CMOS 门电路 2.4 各种集成逻辑们的性 能比较 第2章 上页 下页
第 10 章 运算放大器 10.1 运算放大器简单介绍 10.2 放大电路中的负反馈 10.3 运算放大器在信号运算方面的应用
第七章 脉冲电路.
9.6.2 互补对称放大电路 1. 无输出变压器(OTL)的互补对称放大电路 +UCC
第9章 门电路与组合逻辑电路 9.1 数字电路概述 9.2 逻辑代数与逻辑函数 9.3 逻辑门电路 9.4 逻辑门电路的分析和设计
Presentation transcript:

第六章 概述 一、矩形脉冲的基本特性 1. 矩形脉冲的二值性 二进制数字信号 矩形脉冲 高、低电平 1、0 2. 矩形脉冲的特性参数 第六章 概述 一、矩形脉冲的基本特性 1. 矩形脉冲的二值性 矩形脉冲 二进制数字信号 高、低电平 1、0 2. 矩形脉冲的特性参数 T — 脉冲周期 tf tr 0.9Um Um— 脉冲幅度 Um tW — 脉冲宽度 0.5Um tW 0.1Um tr — 上升时间 T tf — 下降时间

3. 获得脉冲的方法:   1) 自激振荡电路直接产生矩形脉冲。   由多谐振荡器来实现   2) 将已有波形(正弦波、锯齿波等)整形为矩形脉冲。 由施密特触发器和单稳态触发器来实现 555 定时器是构成多谐振荡器、施密特触发器和单稳态触发器的既经济又简单实用的器件。

二、555 定时器 1. 电路组成 uO & uD 输出 缓冲 晶体管 开关 比较器 RS 触发器 分压器 +VCC 8 4 5 k 5 TD 5 k 8 3 1 6 5 7 2 4 & uD 输出 缓冲 晶体管 开关 比较器 RS 触发器 分压器

uo 2. 基本功能 uO & uD 1 1 UTH U R   UOL >2VCC/3 >VCC/3 1 UOL TD 5 k 8 3 1 6 5 7 2 4 & uD CO TH TR 1 1 UTH uo TD的状态 U R   UOL 饱和 >2VCC/3 >VCC/3 1 UOL 饱和 <2VCC/3 >VCC/3 不变 不变 <2VCC/3 <VCC/3 UOH 截止

555 3. 555 定时器的外引脚和性能 电源电压 输出高电平 双极型 (TTL) 4.5  16V ≥90%VCC 3. 555 定时器的外引脚和性能 555 1 2 3 4 8 7 6 5 电源电压 输出高电平 双极型 (TTL) 4.5  16V ≥90%VCC 单极型 (CMOS) 3  18V ≥95%VDD

单极型和双极型集成电路区别 双极型和单极型主要指的是组成集成电路的晶体管的极性而言的。双极型集成电路是由NPN或PNP型晶体管组成。由于电路中载流子有电子和空穴两种极性,因此取名为双极型集成电路,就是人们平时说的TTL集成电路。制造工艺复杂,功耗大。    单极型集成电路是由MOS场效应晶体管组成的。因场效应晶体管只有多数载流子参加导电,故称场效应晶体管为单极晶体管,由这种单极晶体管组成的集成电路就得名为单极型集成电路,就是平时说的MOS集成电路。制造工艺简单,功耗小。

6.1 施密特触发器 (Schmitt Trigger) 6.1.1 用 555 定时器构成的施密特触发器 一、普通反相器和施密特反相器的比较 普通反相器 UTH ? uA TTL: 1.4 V A Y 1 uY CMOS: 施密特反相器 UT+ 上限阈值电压 uA UT– 下限阈值电压 A Y uY 回差电压:

一、电路组成及工作原理 工作原理 uI & uO1 t uO 1 1 uI uO2 1 uI 上升时与 2VCC/3 比 外加 UCO 时, TD 8 3 1 6 5 7 2 4 & uI t UOH uO UOL O UCO 1 1 +VDD uI uO2 1 uI 上升时与 2VCC/3 比 外加 UCO 时, 可改变阈值和回差电压 uI 下降时与 VCC/3 比

二、滞回特性及主要参数 1. 滞回特性 2. 主要静态参数 uO 上限阈值电压 UOH UT+ UOL 下限阈值电压 uI UT– 特点: 回差 电压 上限阈值电压 UT+ 下限阈值电压 UT– 特点: 回差电压 uI 增大时与上限阈值比 UT = UT+ – UT– uI 减小时与下限阈值比

6.1.2 集成施密特触发器 一、CMOS 集成施密特触发器 1. 引出端功能图 VDD VSS VDD VSS CC40106(六反相器) 6.1.2 集成施密特触发器 一、CMOS 集成施密特触发器 1. 引出端功能图 1A 1Y 2A 2Y 3A 3Y 6A 6Y 5A 5Y 4A 4Y VDD VSS 1 2 3 4 5 6 7 14 13 12 11 10 9 8 3A 3B 3Y 4Y 4A 4B VDD VSS 1 2 3 4 5 6 7 14 13 12 11 10 9 8 1A 1Y 1B 2A 2Y 2B CC40106(六反相器) CC4093(四2输入与非门)

6.2 单稳态触发器 特点: 1. 只有两种状态: 稳态和暂稳态; 2. 外来触发 (窄) 脉冲使: 稳态暂稳态稳态; 6.2 单稳态触发器 特点: 1. 只有两种状态: 稳态和暂稳态; 2. 外来触发 (窄) 脉冲使: 稳态暂稳态稳态; 3. 暂稳态持续时间仅取决于电路参数, 与触发脉冲无关。 用途; 定时:产生一定宽度的方波。 延时:将输入信号延迟一定时间后输出。 整形:把不规则波形变为宽度、幅度都相等的脉冲。

6.2.1 用 555 定时器构成的单稳态触发器 一、电路组成及工作原理 稳态: TD 饱和, Q = 0 暂稳态: 6.2.1 用 555 定时器构成的单稳态触发器 一、电路组成及工作原理 稳态: TD 饱和, Q = 0 +VCC uO 8 3 1 6 5 7 2 4 & TD Q R C 1 饱和 1 1 暂稳态: TD 截止, Q = 1 1 截止 引起暂稳态的原因: 1. 通电的随机过程; uI 2. uI 从 1  0 使 u2 < VCC/3, 引起 Q = 1,TD 截止。 uC 饱和 导通 暂稳态  稳态 自动 uI 与 VCC/3 比较 uC 与 2VCC/3 比较

二、工作波形 三、主要参数 555 uI uC – 1. 输出脉冲宽度 tw uC(0+) = 0, uC() = VCC uO 6 2 7 8 4 1 5 3 555 R C + +VCC 0.01 F uI uC – 1. 输出脉冲宽度 tw uC(0+) = 0, uC() = VCC uO uC(tw) = 2VCC / 3 uI VCC 2. 恢复时间 tre 很小 2 = RCESC VCC 2VCC/ 3 3. 最高工作频率 fmax uC uO tw

6.3 多谐振荡器 Astable Multivibrator 6.3.1 555 定时器构成的多谐振荡器 6 2 7 8 4 1 5 3 555 R1 C1 + R2 C2 +VCC 一、电路组成和工作原理 +VCC uO 8 3 1 6 5 7 2 4 & TD R1 R2 C uC t UOH uO UOL uC

二、振荡频率的估算和占空比可调电路 (1) C 充电时间 tw1 555 uC(0+) = VCC / 3, uC() = VCC 1. 振荡频率的估算 (1) C 充电时间 tw1 6 2 7 8 4 1 5 3 555 R1 C + R2 C2 +VCC uC(0+) = VCC / 3, uC() = VCC 充电时间常数 1= (R1+R2)C (2) C 放电时间 tw2 可求得: 放电时间常数 2 = R2C

(3) 振荡频率 f uC t uO tw1 tw2 tw1= 0.7 (R1+R2) C tw2 = 0.7R2C 振荡周期: UOH uO UOL tw1 tw2 T tw1= 0.7 (R1+R2) C tw2 = 0.7R2C 振荡周期: T = 0.7(R1+2R2)C 振荡频率: 占空比:

2. 占空比可调电路 tw1= 0.7R1C uO 555 tw2 = 0.7R2C +VCC R1 4 8 7 3 D1 D2 R2 6

第六章 小 结 一、555 定时器 是一种多用途的集成电路。只需外接少量阻容元件便可构成各种脉冲产生、整形电路,如施密特触发器、单稳态触发器和多谐振荡器等。 双极型 (TTL) 电源: 4.5  16 V 555 1 2 3 4 8 7 6 5 单极型 (CMOS) 电源: 3  18 V 带负载能力强

是一种自激振荡电路,不需要外加输入信号,就可以自动地产生出矩形脉冲。 二、多谐振荡器 是一种自激振荡电路,不需要外加输入信号,就可以自动地产生出矩形脉冲。 多谐振荡器没有稳定状态, 只有两个暂稳态。暂稳态间的相 互转换完全靠电路本身电容的充 电和放电自动完成。 6 2 7 8 4 1 5 3 555 R1 C + R2 C1 +VCC uO 改变 R、C 定时元件数值的 大小,可调节振荡频率。 在振荡频率稳定度要求很高的情况下,可采用石英晶体振荡器。

是一种脉冲整形电路,虽然不能自动产生矩形脉冲,却可将输入的周期性信号整形成所要求的同周期 三、施密特触发器 是一种脉冲整形电路,虽然不能自动产生矩形脉冲,却可将输入的周期性信号整形成所要求的同周期 的矩形脉冲输出,还可用来进行幅度鉴别、构成单稳态触发器和多谐振荡器等。 6 2 7 8 4 1 5 3 555 +VCC uO2 uI UCO uO1 +VDD R 施密特触发器有两个稳定状态,有两个不同的触发电平,因此具有回差特性。它的两个稳定状态是靠两个不同的电平来维持的,输出脉冲的宽度由输入信号的波形决定。此外,调节回差电压的大小,也可改变输出脉冲的宽度。 外接电压调节回差 施密特触发器可由 555 定时器构成,也可用专门的集成电路实现。

也属于脉冲整形电路,可将输入的触发脉冲变换为宽度和幅度都符合要求的矩形脉冲,还常用于脉冲 的定时、整形、展宽(延时)等。 四、单稳态触发器 也属于脉冲整形电路,可将输入的触发脉冲变换为宽度和幅度都符合要求的矩形脉冲,还常用于脉冲 的定时、整形、展宽(延时)等。 单稳态触发器有一个稳定 状态和一个暂稳态。其输出脉 冲的宽度只取决于电路本身 R、 C 定时元件的数值,与输入信 号无关。输入信号只起到触发 电路进入暂稳态的作用。 6 2 7 8 4 1 5 3 555 R C + C1 +VCC uO 0.01F uI 改变 R、C 定时元件的数 值可调节输出脉冲的宽度。 单稳态触发器可由 555 定时器构成,也可用集成的单稳态触发器实现。