First Law of Thermodynamics

Slides:



Advertisements
Similar presentations
Thermodynamics thermo-, thermal :熱、溫 「熱」: 「熱(不冷): warm 或 hot 」 「熱量: heat 」 thermal (形容詞) → thermo- (字頭) Thermodynamics electric (形容詞) → electro- (字頭)
Advertisements

第一章 热力学第一定律 The first law of thermodynamics
--- Chapter 10 Convection ---
第二章 热能转换的基本概念 和基本定律.
能及其应用 初三物理 主讲教师:胡展翅.
工程热力学2 第1章 实际气体的热力性质 第1章 实际气体的热力学性质
工程热力学 Engineering Thermodynamics
第四章 热力学第二定律.
{范例8.8} 卡诺循环图 为了提高热机的效率,1824年法国青年工程师卡诺从理论上研究了一种理想循环:卡诺循环。这就是只与两个恒温热源交换热量,不存在漏气和其他热耗散的循环。 如图所示,理想气体准静态卡诺循环在p-V图上是两条等温线和两条绝热线所围成的封闭曲线。理想气体由状态a出发,先经过温度为T1的等温膨胀过程a→b,再经过绝热膨胀过程b→c,然后经过温度为T2的等温压缩过程c→d,最后经过绝热压缩过程d→a,气体回到初始状态。
《 University Physics 》 Revised Edition
第二章 热力学第二定律,熵.
第七章 高聚物的力学性质.
Introduction to physics
Differential Equations (DE)
Chapter 9 Vapor Power Cycle 蒸汽动力循环
THERMODYNAMICS OF MATERIALS 材料熱力學
„High-Tech made im Allgäu“
Purposes of Mold Cooling Design
作 業 管 理 指導:盧淵源教授 第四組:碩士專班 N 徐天志 N 林耀宗 N 陳丁雲
第三章 热力学第一定律 Chapter 3. The first law of thermodynamics
(The First Law of Thermodynamics)
Noise & Distortion in Microwave Systems.
总复习 (Overall Review).
19. 2nd Law of Thermodynamics 熱力學第二定律
Review of Material Balance
普通物理 General Physics 27 - Circuit Theory
Fundamentals of Physics 8/e 27 - Circuit Theory
附加内容 “AS”用法小结(1).
热力学与统计物理 金晓峰 复旦大学物理系 /11/28.
The Second Law of Thermodynamics 熱力學第二定律
一、自然过程的方向 direction of natural process
Short Version : 6. Work, Energy & Power 短版: 6. 功,能和功率
机器人学基础 第四章 机器人动力学 Fundamentals of Robotics Ch.4 Manipulator Dynamics
熱力學 I 溫度與平衡 十八世紀前人類對熱現象的認知還帶有點神秘的色彩在其中,熱力學較科學化的發展可溯源自工業革命時代,人類對熱與機械功之間轉換關連的研究,影響熱力學源起發展的一個非常重要因素為溫度的觀念。 焦爾(Joule)等人的實驗結果與荷姆赫滋(Helmholtz)等的理論研究共同成就了熱現象中的能量守恆的原則,此原則奠下了熱力學第一定律(1942年由Mayer提出)的基礎。
Short Version :. 11. Rotational Vectors & Angular Momentum 短版:. 11
Basic thermodynamic process
塑膠材料的種類 塑膠在模具內的流動模式 流動性質的影響 溫度性質的影響
消費者偏好與效用概念.
DOE II建築節能模擬軟體介紹 -空調節能設計篇
Chapter 8 Thermodynamics of High-Speed Gas Flow (第8章 气体和蒸气的流动)
First-Law Analysis for a Control Volume
句子成分的省略(1).
Fundamentals of Physics 8/e 0 – Table of Contents
普通物理 General Physics 21 - Coulomb's Law
Mechanics Exercise Class Ⅰ
19. 2nd Law of Thermodynamics 熱力學第二定律
§7-7 热力学第二定律 由热力学第一定律可知,热机效率不可能大于100% 。那么热机效率能否等于100%( )呢? Q1 A 地球 • •
Summary for Chapters 24 摘要: 24章
中国科学技术大学计算机系 陈香兰 2013Fall 第七讲 存储器管理 中国科学技术大学计算机系 陈香兰 2013Fall.
Testing quantum Landauer Principle using
Chapter 2 燃料電池的開迴路電壓及效率
12. Static Equilibrium 靜力平衡
第四章 热力学基础 物理学. 本章概述 一、什么是热学? 研究物质处于热状态下有关性质和规律的物理学分支学科。 二、研究方法
Q & A.
准静态过程 功 热量.
主讲教师 高前欣 农业与食品科学学院 食品工程学科
Mechanics Exercise Class Ⅱ
Ideal Gas.
定语从句(11).
第二章 均匀物质的热力学性质 基本热力学函数 麦氏关系及应用 气体节流和绝热膨胀.
5.3 热力学第二定律 5.3.1热力学第二定律 1. 热力学第二定律的开尔文表述(1851年)
动词不定式(6).
§3 热力学第二定律 (second law of thermodynamics)
12. Static Equilibrium 靜力平衡
2.2 热力学 内能 功 热量 内能 热力学系统内所有分子热运动的能量(分子的平动、转动与振动的能量)和分子间相互作用的势能。不包括系统整体的机械能。 内能是状态量 理想气体的内能是温度的单值函数.
句子成分的省略(3).
题解: P120 5——8 V3=100m/S Ρ=1.29×10-3g/cm3 P3-P2=1000Pa.
定语从句(4).
Summary : 4. Newton's Laws 摘要: 4. 牛頓定律
Principle and application of optical information technology
Presentation transcript:

First Law of Thermodynamics Objective First Law of Thermodynamics Energy Forms and Energy Transfer …Work, Heat and Mass Energy Balance for Closed System Energy Balance for Open System Energy Balance for Steady-Flow System Objective

First Law of Thermodynamics Conservation of Energy Principle Energy can be neither created nor destroyed ;It can only change forms. Energy can change many forms, but its total value keeps constant. The perpetual-motion machine of the first kind can never be made.

First Law of Thermodynamics In 1843, at the age of 25, James Prescott Joule did a series of careful experiments to prove the equivalence of heat and work.

Forms of Energy Transfer {Energy Entering CV } - {Energy Leaving CV} ={Energy Accumulating in CV} There are three forms of energy transfer: Work:caused by a force acting through a distance volume work: moving boundary work Heat: caused by temperature difference between the system and surroundings. Mass flow: mass flow in or out of the system serves as an energy transfer.

Energy Transfer by Work • Definitions – Energy transfer associated with force acting through a distance – Energy crossing the boundary of a closed system that is not heat must be work 系统与外界相互作用而传递的能量,其全部效果为使外界物体改变宏观运动状态。 包含两个必要条件: 确定有力作用在边界上,即系统与外界有相互作用,且力的不平衡势差无限小; 2) 系统边界发生位移,即外界物体改变宏观运动状态。 二者缺一不可

Energy Transfer by Work 例1: p 拔掉销钉后,系统向真空膨胀, 系统是否做功? Vacuum 例2: 刚性容器,加热后系统内压力 升高,系统是否向外做功? p Q

Energy Transfer by Work Units – or J; usually kJ in SI • Work examples – Boundary work (e.g., a gas working against a moving piston) closed system – Shaft work (e.g., a rotating crankshaft on a motor) open system

Energy Transfer by Work 示功图 Work-Process function 功是过程量

Energy Transfer by Work • Work per unit mass • Sign Convention W > 0: work done by the system W < 0: work done on the system W = 0: no work

例: Q 解: 如图所示,气缸初始状态下: 现对气缸加热,使气体膨胀至: 已知:初始状态下,弹簧与气缸接触但不受力,弹簧刚度 大气压力 活塞面积 求:1) 气缸内终了压力和气体做的功? 2) 若活塞与气缸间有摩擦力 存在, 气体做的功是多少? Q 解: 取气缸内的气体为系统,气缸内壁为边界 准静态过程 终了状态为平衡状态,活塞两侧的受力相等

利用示功图求解

若活塞与气缸间存在摩擦,不可逆因素出现在系统外,为外部不可逆过程,这时气体 需要抵抗外力 做功。 在工程实际中,将活塞和气缸作为整体考虑,注重整套装置,即活塞的有效输出功, 这时,摩擦成为内部不可逆因素,整套装置对外做功 但是由于内部摩擦的存在,使得气体必须克服摩擦做功,因此气体必须做功

Energy Transfer by Heat • Definitions — Energy transfer only by a temperature difference -Heat is energy in transformation;path function. • Units • Heat per unit mass

Energy Transfer by Heat • Sign Convention Q > 0: heat transfer to the system Q < 0: heat transfer from the system Q = 0: adiabatic T 1(T1,s1) 2(T2,s2) S - Entropy 熵 S ds

Comparison Between Heat and Work Heat and work are energy transfer mechanisms between a system and its surroundings. Similarities: Both are recognized at boundaries of a system as they cross the boundaries. That is ,both are boundary phenomenon. System processed energy, but not heat and work. Both are associated with a process, not a state. Heat and work have no meaning at a state. Both are path functions. Difference:

Forms of Energy Total Energy =Internal+External =U+Ek+Ep Although energy can take a large number of forms, we can consider only: External and Internal. Kinetic External Total Energy =Internal+External =U+Ek+Ep Potential Physical Internal (U) State Property Chemical Nuclear Note: U is state property

Energy Balance for Closed System {Energy Entering CV } - {Energy Leaving CV} ={Energy Accumulating in CV} For Closed System difference 注意过程量和状态量数学表达的区别!

推动质量进出系统的推动功,即保证质量流动耗费的功 Energy Balance for Open System For Open System Difference with closed system: Energy in mass to and from system Mass equilibrium Including volumetric work and flow work with surrounding 推动质量进出系统的推动功,即保证质量流动耗费的功

Flow Work Total Energy of Flowing Fluid 焓-工质流动时具有的与其热力状态有关的总能量。 1 1kg : dx1 2 Total Energy of Flowing Fluid 焓-工质流动时具有的与其热力状态有关的总能量。 Enthaply 焓

Energy Balance for Open System {Energy Entering CV } - {Energy Leaving CV} ={Energy Accumulating in CV} Energy Entering CV: Heat-in energy with mass in flow work by upfluid

Energy Balance for Open System Energy Leaving CV: Shaftwork energy with mass out flow work by fluid

Energy Balance for Open System 适用于任何工质的任何流动过程

Energy Balance for Open System For Steady Flow System — fluid properties remain constant during the entire process — mass equilibrium — energy in=energy out

Energy Balance for Open System =0 适用于任何工质的任何稳定流动过程

Analysis of Energy Balance Shaft Work w 技术功

Analysis of Energy Balance 稳定流动系统能量方程 适用于任何工质的任何稳定流动过程

Analysis of Energy Balance 对可逆过程 1 p v 2 vdp dp > 0,wt<0 work done on the system dp < 0,wt>0 work done by the system dp = 0, wt=0

Mechanical Energy Conservation For Reversible Process For Quasi-Equilibrium Process with Friction =0 Bonulli Equation

Example 例2-2 解: q 绝热压缩 3 换热器 2 4 换热器吸热 喷管 压缩机 绝热膨胀 气轮机 空气流量 5 空气 1 过程中忽略位能变化 求:1)压缩机功率;2)喷管出口流速;3)气轮机功率;4)整套装置功率 解: 工质在整套装置内的流动为稳定流动,应用稳定流动能量方程求解。

1)压缩机功率 2)喷管出口流速,流经换热器和喷管 1 2 3 4 5 空气 压缩机 换热器 喷管 气轮机 q 3)气轮机功率

4)整套装置功率 或 将整套装置取为系统

End of 1st Law of Thermodynamics Well done!

2.6 Second Law of Thermodynamics Natural process is directive. 2nd Law is used to determine the direction condition limitation of thermal process. *** We will use the 2nd Law as a tool to evaluate whether a process is possible. ***

Spontaneous Process Mechanical Heat Heat Transfer Others: Transferring heat to a paddle wheel will not cause it to rotate. A cup of hot coffee does not get hotter in a cooler room. Others: Gas Free Expansion Mixture Process Combustion and Reaction Process

2.6 Second Law of Thermodynamics 一切实际的热力过程都具有方向性,只能单独自动地朝一个方向进行,这类过程称为自发过程;而其逆方向地过程不能单独自动进行,这类过程称为非自发过程。若要非自发过程得以实现,必须附加某些补充条件,付出一定的代价。

Statement of 2nd Law Clausius: It is impossible to transfer energy from a cooler to a hotter body as a sole effect (requires a heat pump or other device, which needs energy input) 2. Kelvin-Planck: It is impossible to operate a thermodynamic cycle to produce work with only heat transfer from a single reservoir (requires both heat addition and heat rejection)

Statement of 2nd Law Clausius: High-Temperature Reservoir TH Low-Temperature Reservoir TL High-Temperature Reservoir TH Reservoir: a “large” body that can absorb or supply heat without a “noticeable” temperature change

High-Temperature Reservoir TH Statement of 2nd Law 2. Kelvin-Planck High-Temperature Reservoir TH Heat Engine

Statement of 2nd Law 3. 2nd perpetual-motion machine NEVER be made

Second Law of Thermodynamics 热力学第二定律的实质: 自发过程是不可逆的; 若要非自发过程得以实现,必须伴随一个适当的 自发过程作为补充条件。

Heat Transfer 若要实现热量由低温向高温的非自发过程,必须消耗功, 即配合功变热这个自发过程作为补充条件。 Spontaneous Process 若要实现热量由低温向高温的非自发过程,必须消耗功, 即配合功变热这个自发过程作为补充条件。

Mechanical Heat Mechanical Heat 自发过程 非自发过程 1.若要实现热转化功的非自发过程,必须配合向低温热源放热 这一自发过程,因此热机的效率必定小于1。 2.“功可以全部转化成热,但热不能完全变为功” 理想气体的等温膨胀 3.热变功的最高效率-Carnot Cycle

Carnot Cycle(Reversible) Ⅰ Isothermal Expansion Ⅱ Adiabatic Expansion Ⅲ Isothermal Compression T S TH TL S1 S2 Ⅳ Adiabatic Compression

Thermal Efficiency Thermal Efficiency = Desired Output Required Input Net Work Output Total Heat Input WO Qin =1- Qout Definition: Q1—heat transfer between cycle device and high-temerature medium at TH Q2—heat transfer between cycle device and Low-temerature medium at TL

Thermal Efficiency For Heat Engine(卡诺热机) Heat Engine High-Temperature Reservoir TH Heat Engine 区别? Low-Temperature Reservoir TL

Thermal Efficiency For Refrigerator(卡诺制冷机) Refrig- erator 制冷系数 High-Temperature Reservoir TH Refrig- erator 制冷系数 Low-Temperature Reservoir TL

Thermal Efficiency For Heat Pump(卡诺热泵) Heat Pump 供暖系数 High-Temperature Reservoir TH Heat Pump 供暖系数 Low-Temperature Reservoir TL

Carnot Principles 1. All reversible cycles operating between TL and TH have the same efficiency (ηrev) . 2. For same TL and TH, reversible cycles have higher efficiencies than any irreversible cycles.

Conclusions of Carnot Principles Carnot 循环热效率只取决于高温热源和低温热源的温度,即工质吸热和放热的温度。提高T1或降低T2均可提高热效率。 任何循环的热效率均小于1。 T1=T2时,循环热效率为零,说明只从单一热源吸热是不可能把热转变成功的。 要提高实际装置的热效率,必须尽可能减少摩擦等不可逆功损失。

Carnot Cycle with Multi-reservoir Why is the Carnot cycle the highest efficiency of heat to work? A B C D

Example 解: 例2-5 冬季室外温度-10℃,为保持室内温度20℃,需要室内供热 7200kJ/h。试计算: (1)若采用电暖气供暖,需要电功率为多少? 解: (1) 取室内的空气为系统

(2)若采用逆向卡诺循环机供暖,则供暖机功率为多少? Outside Heat Pump ? Carnot Cycle

Outside (3)若该供暖机由另一正向卡诺热机带动,其高温热源温度500K, 低温热源为大气,则正向卡诺热机的供热率为多少? Heat Pump High-Temperature Heat Engine Atmosphere

Entropy 熵 Objective Definition of Entropy Clausius Inequality Entropy Change in Irreversible Process Entropy Generation Increase of Entropy Principal of Isolated System

Entropy A B P Q M N Carnot Cycle 代数值 for any reversible cycle

Entropy p A B P Q M N for whole cycle v State Property

Entropy (J/K) or (kJ/K) Entropy per Unit Mass Entropy indicates the direction and magnitude of heat transfer during reversible process. heat into system, entropy increasing heat out system, entropy decreasing adiabatic system, entropy constant

Clausius Inequality If part of cycle is irreversible process.According to the Carnot Principle: For same TL and TH,reversible cycles have higher efficiencies than irreversible cycles. 代数值

Clausius Inequality “=” Reversible Process “<” Irreversible Process -Heat from surrounding -Temperature of heat reservoir “=” Reversible Process “<” Irreversible Process

Entropy Change in Irreversible Process 1 2 A B p v 1A2 Reversible Process 1B2 Irreversible Process

Entropy Change in Irreversible Process 特别需要理解: 因为熵是状态参数,所以无论是可逆过程还是不可逆过程,如果过程的起始和终了状态相同,那么系统的熵变相同。 该熵变等于(可逆过程)或大于(不可逆过程)过程中系统与外界交换的热量与热源温度比值的积分。 如果初始状态相同,且过程 相同,则系统经过不可逆过程的熵变大于可逆过程熵变。

Entropy Change in Irreversible Process Adiabatic Process Adiabatic + Reversible 定熵过程 Isentropic Process Adiabatic + Irreversible Caused by irreversibility T s 1 2 2’

Entropy Flow and Entropy Generation Irreversible Process Entropy Flow Entropy Generation Entropy change by heat transfer Entropy increase by irreversibility for reversible process for irreversible process

Entropy Flow and Entropy Generation Friction Irreversible Process Work by Friction Reversible Process 吸收摩擦热的热源温度 Friction Work Heat

Entropy Flow and Entropy Generation Heat Transfer by Temperature Difference Temperature of Heat Reservoir

2.10 Increase of Entropy Principal of Isolated System System+Surroundings 孤立系统内所进行的一切实际过程(不可逆过程) 都朝着使系统熵增加的方向进行;在极限情况下 (可逆过程),系统的熵维持不变;任何使系统熵 减小的过程都是不可能的。

Increase of Entropy Principal of Isolated System 1.熵增原理是对孤立系统而言的,系统内的某个物体可与系统内的其它物体相互作用,其熵可增、可减、也可以维持不变。 是指系统内各部分熵变的代数和。既可以按照组成物体计算,也可按照不可逆因素计算。 要想使 的过程得以实现,必须寻找一个使熵增加的过程与原孤立系统伴随进行。而且必须使两者组成的新孤立系统的熵变大于零。 4.当熵不断增加直至达到某个最大值时,系统处于平衡状态,过程即告停止。

Example 11.某热机工作于1000K和400K的两恒温热源之间,每kg工质从高温热源吸热200kJ, (1)试计算其最大循环功; (4)上述三种循环中的熵产各为多少?

(1)计算其最大循环功 解: (2)若工质吸热时与高温热源温差为150K,放热时与低温热源温差20K,则最大输出功是多少? (3)如果上述过程中不仅存在温差传热,由于摩擦又使循环功减少40J,则热机效率又是多少?

(4)上述三种循环中的熵产各为多少? 1.∵为可逆过程 ∴ 熵产为零 2.∵温差传热产生不可逆性 ∴

温差传热 温差传热 摩擦损耗功 3.∵温差传热和摩擦产生不可逆性 解法一:将高温热源、低温热源(Surroundings)和热机(System)取为孤立系统,按照不可逆因素计算孤立系统熵增 温差传热 温差传热 200-w 摩擦损耗功 T2’

请思考: 1.物体熵变计算中, 高温热源 的物理意义? 低温热源 2.热机的不可逆摩擦损耗 如何处理? 热机 3.∵温差传热和摩擦产生不可逆性 解法二:将高温热源、低温热源(Surroundings)和热机(System)取为孤立系统,按照组成物体计算孤立系统熵增 请思考: 1.物体熵变计算中, 的物理意义? 高温热源 低温热源 2.热机的不可逆摩擦损耗 如何处理? 热机

1.对于热源 与外界交换的热量,包括数量和方向 换热温度 高温热源 低温热源 2.工质经历循环后熵变 热机摩擦损耗全部转变成热,被低温热源吸收。

热机 高温热源 低温热源

本章小结 热力学第二定律的实质和表达 卡诺循环的组成及图形表示 卡诺定理 判断热力过程方向和限度的方法 Clausius 不等式 可逆过程与不可逆过程的熵变 熵流与熵产 孤立系统熵增原理和计算方法

Laws of Thermodynamics completed! Keep going!