细菌双组分调节系统 Two-Component Regulatory System 第六章 细菌双组分调节系统 Two-Component Regulatory System
内容 定义 分类和组成(趋化性、渗透压、氮同化和固氮调节) 磷酸盐的吸收 群体感应 与细菌耐药性关系 应用
细菌双组分调节系统又叫细菌双组分系统( Two-Component Regulatory System,TCS )双组分信号传导系统(two-component signal transduction systems,TCSTS)
Two-component regulatory systesms 1. 基本所有细菌都 有: 1% of genome 2. 有信号识别和传导 (激酶)两部分 3. RR通常为转录 调节蛋白 4
HPK是一种跨膜蛋白,几乎所有的HPK都含有2个跨膜区(TM1、TM2)。HPK的N-端有一个能感受外界信号的输入区,C-端有一个由约250个氨基酸残基组成的转导区,该区具有自主磷酸激酶的功能,磷酸化的位点一般是保守的His残基(H)。此外,转导区中还含有5个由5~10个氨基酸残基组成的高度保守区域。
反应调节因子(RR)迄今已发现有400多种RR,同源性分析结果表明,这些RR之间具有20%~30%的相似性[3]。它们的N一端都含有一个大约由110个氨基酸组成的信号接收区,其中有一个保守的天冬氨酸残基(Asp)是磷酸化发生的位点。RR的C端是具有某种输出或效应器活性的结构域,称为输出区。 在多数情况下,RR是转录因子,输出区作为DNA结合域与目标启动子上游的DNA序列进行结合而调节基因的转录,接收区则通过Asp磷酸化调节输出区的活性。需要指出的是,尽管大多数RR是作为转录因子起作用的,但也有许多RR与转录无关。例如,大肠杆菌反应调节因子CheB的作用是使趋化受体蛋白(chemotaxis-receptor proteins)发生去甲基化,CheB接收区的磷酸化则促进该过程的进行[4]
The "Two-Component" Regulatory System (Parkinson and Kofoid, 1992) 广泛存在于细菌、古菌、真菌,单细胞真核生物、植物,但是在动物细胞中没有发现。
细胞内的双组分体系调节的反应 nutrient acquisition nitrogen phosphorus carbon energy metabolism electron transport systems uptake and catabolic machinery virulence plasmid transfer degradative secretions toxin production adherence factors adaptation to physical or chemical aspects of the environment pH osmolarity light quality complex developmental pathways sporulation fruiting body development swarmer cell production
in 10 sub-families (families & functions) A single cell may have many two-component systems E. coli 178 信号蛋白中, 62 参与了双组分系统 26 histidine kinases (PSI-BLAST search of E. coli genome for signal transmitters) 36 response regulators (PSI-BLAST search of E. coli genome for signal receivers) in 10 sub-families (families & functions) 整个信号转导过程只由两个组分(HPK和RR)即可完成,是一典型的、最简单的TCSTS。需要强调的是,随着研究的广泛深入,发现TCSTS并非想象中的那么简单,在一些条件下,可能不止一个HPK或RR参与了一种信号的转导;而在一个菌细胞中也可能有多种二元系统存在,来感应或转导不同的信息。
受体复合体主要由细胞膜上的4个可甲基化趋化蛋白(methyl-accepting chemotaxis proteins or MCPs),组氨酸激酶CheA、连接蛋白CheW组成. 当诱导物结合时促进从顺时针(clockwise signalling [CWS] )向逆时针转变(counter-clockwise signalling [CCWS])
没有诱导物时,CheA 自身磷酸化,将P传递给调节蛋白CheY,Y的Asp57磷酸化导致和A的亲和力下降提高了与FliM蛋白的亲和力,两者的相互作用增加了鞭毛CW旋转。CheZ可以促进CheY-P的去磷酸化作用。
Figure 1. Example of a basic two-component system. The E Figure 1. Example of a basic two-component system. The E. coli osmolarity-response system consists of an HPK osmosensor (EnvZ) and an RR transcription factor (OmpR) (Pratt and Silhavy, 1995). EnvZ autophosphorylates using ATP as the phosphate donor. The phosphate from the transmitter module of EnvZ is then transferred to an Asp residue in the receiver module of OmpR, thereby affecting the promoter interactions of the OmpR DNA-binding module, which regulates the transcription of two porin genes, ompF and ompC. Changes in osmolarity are perceived by the amino-terminal module of EnvZ. In response to such changes, EnvZ changes the level of phosphorylated OmpR. The dotted lines depict intra-protein regulatory interactions. The dashed line depicts phosphorylation/dephosphorylation events. P, Phosphoryl group; H, His; D, Asp.
ompF基因有ompR产物的高亲和位点 ompC基因有ompR产物的低亲和位点 低渗透压时,ompR基因产物少,只结合高亲和位点,ompF基因表达量升高;高渗透压时,ompR基因产物多,可结合低亲和位点,与ompC基因结合,双向转录,促使ompC基因表达量升高外,反向转录生成micFRNA可与ompF的mRNA结合,阻碍翻译。
Regulation of Translation by Antisense RNA
Fig. B3
The initiation of sporulation is governed in part by the activities of two spatially separated sigma factors
The activation of sigma F is accomplished through 磷酸盐吸收 The activation of sigma F is accomplished through a phosphorelay system
The adenylylation/deadenylylation cycle that controls the activity of glutamine synthetase. The adenylylation/deadenylylation cycle that controls the activity of glutamine synthetase. The enzyme UTase signals high N status through PII and low N status through PII-UMP by stimulating ATase to inactivate or activate, respectively, GS so that ATP can be used to ligate ammonia to glutamate to form glutamine. The paralogue GlnK that is expressed during low N and uridylylated at the same position as PII is not shown (see text for details); nor is the transcription regulation of the GS level through the two component system indicated. 腺苷脱腺苷控制谷氨酰胺合成酶(GS)活性。氮信号被腺(尿)苷酰转移酶(ATase或UTase)识别。低氮激活UTase,尿苷酰化的PII协助ATase对GS-AMP 去腺苷酰化。 23
细菌群体感应
抗生素诱细菌SOS反应 细菌的SOS 反应 四种常用抗生素对大肠杆菌SOS反应的诱导 Kohanski MA, 2010 细菌的SOS 反应 四种常用抗生素对大肠杆菌SOS反应的诱导 SOS反应诱导错误倾向的DNA复制,大大提高碱基自发突变率,导致产生多重抗生素耐药性; SOS反应通过诱导整合子重组,促进溶源性噬菌体的裂解,加速了耐药基因在细菌间的水平转移[18]。 另外,SOS反应诱导蛋白可以提高细菌对抗生素的耐药性,比如链球菌(Streptococcus pneumoniae)热休克蛋白ClpL的诱导表达可以增强链球菌对青霉素的耐药性。
意义 是细菌的一种普遍而又重要的信号传递系统, 也是一个基因表达的调节系统 理论意义就在于阐明了细菌对环境变化做出反应的基本过程, 为深化细菌行为、生态、生理生化研究奠定了基础 二元信号传递的作用对象是那些赋予细菌具有特殊功能、行为的基因。例如土壤杆菌毒性基因、盐杆细菌趋化性基因、假单胞菌和欧文氏菌中的hrp 基因( 过敏性反应基因)。与细菌鞭毛运动特性有关的基因及粘细菌的滑动及其产孢基因。另外还有固氮、磷的调控及芽孢形成基因等等。
本节内容总结