第9章 因子分析 factor analysis

Slides:



Advertisements
Similar presentations
四川财经职业学院会计一系会计综合实训 目录 情境 1.1 企业认知 情境 1.3 日常经济业务核算 情境 1.4 产品成本核算 情境 1.5 编制报表前准备工作 情境 1.6 期末会计报表的编制 情境 1.2 建账.
Advertisements

第 2 梯次鑑定提報特教通報網系統操作 學年度教育部國民及學前教育署 高級中等學校身心障礙學生鑑定.
主编:邓萌 【点按任意键进入】 【第六单元】 教育口语. 幼儿教师教育口 语概论 模块一 幼儿教师教育口语 分类训练 模块二 适应不同对象的教 育口语 模块三 《幼儿教师口语》编写组.
第一組 加減法 思澄、博軒、暐翔、寒菱. 大綱 1. 加減法本質 2. 迷思概念 3. 一 ~ 七冊分析 4. 教材特色.
海南医学院附 院妇产科教室 华少平 妊娠合并心脏病  概述  妊娠、分娩对心脏病的影响  心脏病对妊娠、分娩的影响  妊娠合病心脏病的种类  妊娠合并心脏病对胎儿的影响  诊断  防治.
植树节的由来 植树节的意义 各国的植树节 纪念中山先生 植树节的由来 历史发展到今天, “ 植树造林,绿化祖国 ” 的热潮漫卷 了中华大地。从沿海到内地,从城市到乡村,涌现了多少 造林模范,留下了多少感人的故事。婴儿出世,父母栽一 棵小白怕,盼望孩子和小树一样浴光吮露,茁壮成长;男 女成婚,新人双双植一株嫩柳,象征家庭美满,幸福久长;
客户协议书 填写样本和说明 河南省郑州市金水路 299 号浦发国际金融中 心 13 层 吉林钰鸿国创贵金属经营有 限公司.
浙江省县级公立医院改革与剖析 马 进 上海交通大学公共卫生学院
第二章 环境.
上海市党员党组织管理信息系统 培训讲义.
教师招聘考试 政策解读 讲师:卢建鹏
了解语文课程的基本理念,把握语文素养的构成要素。 把握语文教育的特点,特别是开放而有活力的语文课程的特点。
北台小学 构建和谐师生关系 做幸福教师 2012—2013上职工大会.
福榮街官立小學 我家孩子上小一.
中国旅游研究院武汉分院成果展示 ——2011年武汉市旅游市场调研成果简报 华中师范大学 中国旅游研究院武汉分院 二〇一一年十二月.
第2期技職教育再造方案(草案) 教育部 101年12月12日 1 1.
企业员工心态管理培训 企业员工心态管理培训讲师:谭小琥.
历史人物的研究 ----曾国藩 组员: 乔立蓉 杜曜芳 杨慧 组长:马学思 杜志丹 史敦慧 王晶.
教育部高职高专英语类专业教学指导委员会 刘黛琳 山东 • 二○一一年八月
淡雅诗韵 七(12)班 第二组 蔡聿桐.
第七届全国英语专业院长/系主任高级论坛 汇报材料
小數怕長計, 高糖飲品要節制 瑪麗醫院營養師 張桂嫦.
制冷和空调设备运用与维修专业 全日制2+1中等职业技术专业.
会计信息分析与运用 —浙江古越龙山酒股份有限公司财务分析 组员:2006级工商企业管理专业 金国芳 叶乐慧 魏观红 徐挺挺 虞琴琴.
第六章 人体生命活动的调节 人体对外界环境的感知.
芹菜 英语051班 9号 黄秋迎 概论:芹菜是常用蔬菜之一,既可热炒,又能凉拌,深受人们喜爱。近年来诸多研究表明,这是一种具有很好药用价值的植物。 别名:旱芹、样芹菜、药芹、香芹、蒲芹 。 芹菜属于花,芽及茎类。
2012年 学生党支部书记工作交流 大连理工大学 建工学部 孟秀英
北京市职业技能鉴定管理中心试题管理科.
2014吉林市卫生局事业单位招聘153名工作人员公告解读
统 计 学 (第三版) 2008 作者 贾俊平 统计学.
各類所得扣繳法令 與申報實務 財政部北區國稅局桃園分局 103年9月25日
初級游泳教學.
爱国卫生工作的持续发展 区爱卫办 俞贞龙.
第八章 数学活动 方程组图象解法和实际应用
本课内容提要 一、汇率的含义 二、汇率变化与币值的关系 三、汇率变化的影响. 本课内容提要 一、汇率的含义 二、汇率变化与币值的关系 三、汇率变化的影响.
散文鉴赏方法谈.
比亚迪集成创新模式探究 深圳大学2010届本科毕业论文答辩 姓名:卓华毅 专业:工商管理 学号: 指导老师:刘莉
如何撰写青年基金申请书 报 告 人: 吴 金 随.
点击输 入标题 点击输入说明性文字.
國際志工海外僑校服務 越南 國立臺中教育大學 2010年國際志工團隊.
痰 饮.
學分抵免原則及 學分抵免線上操作說明會.
教 学 查 房 黄宗海 南方医科大学第二临床医学院 外科学教研室.
评 建 工 作 安 排.
“十二五”国家科技计划经费管理改革培训 概预算申报与审批 国家科学技术部 2012年5月.
“十二五”国家科技计划经费管理改革培训 概预算申报与审批 国家科学技术部 2012年5月.
首都体育学院 武术与表演学院 张长念 太极拳技击运用之擒拿 首都体育学院 武术与表演学院 张长念
现行英语中考考试内容与形式的利与弊 黑龙江省教育学院 于 钢 2016, 07,黄山.
第5讲:比较安全学的创建 吴 超 教授 (O)
彰化縣西勢國小備課工作坊 新生入學的班級經營 主講:黃盈禎
2015年11月2日第二期 音乐班研修简报 本期编辑 白秀峰 徐景华 张铁梅 韩世军 制 作 张 铁 梅.
詹婉華 台北縣新店市中正國民小學 呂玉琴 國立台北師範學院數學教育學系
中信信诚-淮安项目.
稳规模 强内涵 为转型发展打基础 襄阳广播电视大学.
征 管 改 革 的 变 化 您感受到了吗 (纳税服务版) 开封市地方税务局宣 尊敬的纳税人,尊敬的领导,同志们大家好:
广告法相关内容培训.
第三組 偏差與正常 4A3I0006 周秀鎂 4A3I0009 閔佑婷 4A3I0035 蔡佩倫 4A3I0041 林宜臻
体育教师提高科研能力的有效策略 ——从观察、分析、选题、构思谈起
全省水产技术推广补助项目 信息员培训 河南省农业厅水产局 2013年11月17日.
经济发展新环境下糖企如何运用金融工具服务生产经营
多變量分析 Multivariant Analysis
好爸妈胜过好老师 激活兴趣、培养能力、以文育人 主讲:谢晓鸿 快乐作文杂志社 重庆小记者站.
国开学习网/形考模块
第十三章 調查研究.
校长、教授推荐阅读 书目·第三辑.
第12章 因素分析  本章的學習主題  1. 因素分析的主要概念及目的 2. 主成份分析與一般因素分析之差異 3. 因素分析轉軸的概念
第六章 因子分分析 §6.1 因子分析的基本理论 §6.2 因子载荷的求解 §6.3 因子分析的步骤与逻辑框图 §6.4 因子分析的上机实现
受欢迎的课堂具有什么特征 课堂观察研究 问卷调查研究
介绍: 1、主成分分析与因子分析的概念 2、主成分分析与因子分析的过程
第二章 主成分分析 §2.1 主成分分析的基本思想与理论 §2.2 主成分分析的上机实现 2019/4/23 1
Presentation transcript:

第9章 因子分析 factor analysis SPSS 16实用教程 第9章 因子分析 factor analysis 艾对元: 13893660097 aidy@gsau.edu.cn QQ: 156797555 http://www.sciencenet.cn/u/eddy7777/

因子分析定义数学模型 9.1 SPSS中实现过程 9.2

因子分析是将现实生活中众多相关、重叠的信息进行合并和综合,将原始的多个变量和指标变成较少的几个综合变量和综合指标,以利于分析判定。本章介绍因子分析的定义、因子分析的数学模型,以及因子分析在SPSS中的实现过程。

9.1 因子分析的定义和数学模型 9.1.1 统计学上的定义 定义:在社会、政治、经济和医学等领域的研究中往往需要对反映事物的多个变量进行大量的观察,收集大量的数据以便进行分析,寻找规律。在大多数情况下,许多变量之间存在一定的相关关系。 因此,有可能用较少的综合指标分析存在于各变量中的各类信息,而各综合指标之间彼此是不相关的,代表各类信息的综合指标称为因子。因子分析就是用少数几个因子来描述许多指标或因素之间的联系,以较少几个因子反映原资料的大部分信息的统计学方法。

因子分析有如下特点。 (1)因子变量的数量远少于原有的指标变量的数量,对因子变量的分析能够减少分析中的计算量。 (2)因子变量不是对原有变量的取舍,而是根据原始变量的信息进行重新组构,它能够反映原有变量大部分的信息。 (3)因子变量之间不存在线性相关关系,对变量的分析比较方便。 (4)因子变量具有命名解释性,即该变量是对某些原始变量信息的综合和反映。

9.1.2 数学模型

因子分析中的几个概念 1.因子载荷 2.变量共同度 3.公共因子Fj的方差贡献

9.1.3 因子分析的4个基本步骤 因子分析有两个核心问题:一是如何构造因子变量;二是如何对因子变量进行命名解释。因子分析有下面4个基本步骤。 (1)确定待分析的原有若干变量是否适合于因子分析。 (2)构造因子变量。 (3)利用旋转使得因子变量更具有可解释性。 (4)计算因子变量的得分。

9.1.4 确定待分析的原有若干变量是否适合于因子分析 因子分析是从众多的原始变量中构造出少数几个具有代表意义的因子变量,这里面有一个潜在的要求,即原有变量之间要具有比较强的相关性。如果原有变量之间不存在较强的相关关系,那么就无法从中综合出能反映某些变量共同特性的少数公共因子变量来。因此,在因子分析时,需要对原有变量作相关分析。

最简单的方法就是计算变量之间的相关系数矩阵。如果相关系数矩阵在进行统计检验中,大部分相关系数都小于0 最简单的方法就是计算变量之间的相关系数矩阵。如果相关系数矩阵在进行统计检验中,大部分相关系数都小于0.3,并且未通过统计检验,那么这些变量就不适合于进行因子分析。 1.巴特利特球形检验(Bartlett Test of Sphericity) 2.反映像相关矩阵检验(Anti-image correlation matrix) 3.KMO(Kaiser-Meyer-Olkin)检验

9.1.5 构造因子变量 因子分析中有多种确定因子变量的方法,如基于主成分模型的主成分分析法和基于因子分析模型的主轴因子法、极大似然法、最小二乘法等。其中基于主成分模型的主成分分析法是使用最多的因子分析方法之一。下面以该方法为对象进行分析。

9.1.6 因子变量的命名解释

在实际分析工作中,主要是通过对载荷矩阵A的值进行分析,得到因子变量和原变量的关系,从而对新的因子变量进行命名。

9.1.7 计算因子得分 计算因子得分是因子分析的最后一步。因子变量确定以后,对每一样本数据,希望得到它们在不同因子上的具体数据值,这些数值就是因子得分,它和原变量的得分相对应。有了因子得分,在以后的研究中,就可以针对维数少的因子得分来进行。

9.2 SPSS中实现过程 9.2.1 SPSS中实现步骤  研究问题  研究问题 表9-2所示为20名大学生关于价值观的9项测验结果,包括合作性、对分配的看法、行为出发点、工作投入程度、对发展机会的看法、社会地位的看法、权力距离、对职位升迁的态度、以及领导风格的偏好。

表9-2 20名大学生的9项测验结果 合作性 分 配 出发点 工作投入 发展机会 社会地位 权力距离 职位升迁 领导风格 16 13 18 表9-2 20名大学生的9项测验结果 合作性 分 配 出发点 工作投入 发展机会 社会地位 权力距离 职位升迁 领导风格 16 13 18 17 15 19 14 20

 实现步骤 图9-1 在菜单中选择“Factor”命令

图9-2 “Factor Analysis”对话框

图9-3 “Factor Analysis:Descriptives”对话框

图9-4 “Factor Analysis:Extraction”对话框

图9-5 “Factor Analysis:Rotation”对话框

图9-6 “Factor Analysis:Facfor Scores”对话框

图9-7 “Factor Analysis:Options”对话框

9.2.2 SPSS结果解释 (1)SPSS输出结果文件中的第一部分如下表所示。

(2)SPSS输出结果文件中的第二部分如下表所示。

(4)SPSS输出结果文件中的第四部分如下表所示。

(6)SPSS输出结果文件中的第六部分如下表所示。

(7)SPSS输出结果文件中的第七部分为Total Variance Explained表格。如下表所示。

(8)SPSS输出结果文件中的第八部分如图9-8所示。

(9)SPSS输出结果文件中的第九部分如下表所示。

(10)SPSS输出结果文件中的第十部分如下表所示。

(12)SPSS输出结果文件中的第十二部分如图9-9所示。

(13)SPSS输出结果文件中的第十三部分如下表所示。

9.2.3 讨论 因子分析是对现实生活中众多的相关、重叠信息进行合并和综合,它以最少的信息丢失,将原始的众多变量和指标变成较少的几个综合变量,以利于分析判定。 在研究中,因子分析得到的结果经常用于综合判定。

小 结 因子分析是由Charles Spearman在1904年首次提出,其在某种程度上可以被看成是主成分分析的推广和扩展。因子分析就是用少量几个因子来描述许多指标或因素之间的联系,以较少的几个因子反应原资料的大部分信息的统计方法。 因子分析有两个核心问题:一是如何构造变量,二是如何对因子变量命名解释。因子分析的基本步骤有四步:(1)确定带分析的原有若干变量是否适于因子分析;(2)构造因子变量;(3)利用旋转使得因子变量更具有可解释性;(4)计算因子变量得分。

汇报什么? 假定你是一个公司的财务经理,掌握了公司的所有数据,比如固定资产、流动资金、每一笔借贷的数额和期限、各种税费、工资支出、原料消耗、产值、利润、折旧、职工人数、职工的分工和教育程度等等。 如果让你向上面介绍公司状况,你能够把这些指标和数字都原封不动地摆出去吗? 当然不能。 你必须要把各个方面作出高度概括,用一两个指标简单明了地把情况说清楚。

主成分分析 每个人都会遇到有很多变量的数据。 比如全国或各个地区的带有许多经济和社会变量的数据;各个学校的研究、教学等各种变量的数据等等。 这些数据的共同特点是变量很多,在如此多的变量之中,有很多是相关的。人们希望能够找出它们的少数“代表”来对它们进行描述。 本章就介绍两种把变量维数降低以便于描述、理解和分析的方法:主成分分析(principal component analysis)和因子分析(factor analysis)。实际上主成分分析可以说是因子分析的一个特例。在引进主成分分析之前,先看下面的例子。

成绩数据(student.sav) 100个学生的数学、物理、化学、语文、历史、英语的成绩如下表(部分)。

对于我们的数据,SPSS输出为 这里的Initial Eigenvalues就是这里的六个主轴长度,又称特征值(数据相关阵的特征值)。头两个成分特征值累积占了总方差的81.142%。后面的特征值的贡献越来越少。

特征值的贡献还可以从SPSS的所谓碎石图看出

怎么解释这两个主成分。前面说过主成分是原始六个变量的线性组合。是怎么样的组合呢?SPSS可以输出下面的表。 这里每一列代表一个主成分作为原来变量线性组合的系数(比例)。比如第一主成分作为数学、物理、化学、语文、历史、英语这六个原先变量的线性组合,系数(比例)为-0.806, -0.674, -0.675, 0.893, 0.825, 0.836。

如用x1,x2,x3,x4,x5,x6分别表示原先的六个变量,而用y1,y2,y3,y4,y5,y6表示新的主成分,那么,原先六个变量x1,x2,x3,x4,x5,x6与第一和第二主成分y1,y2的关系为: X1=-0.806y1 + 0.353y2 X2=-0.674y1 + 0.531y2 X3=-0.675y1 + 0.513y2 X4= 0.893y1 + 0.306y2 x5= 0.825y1 + 0.435y2 x6= 0.836y1 + 0.425y2 这些系数称为主成分载荷(loading),它表示主成分和相应的原先变量的相关系数。 比如x1表示式中y1的系数为-0.806,这就是说第一主成分和数学变量的相关系数为-0.806。 相关系数(绝对值)越大,主成分对该变量的代表性也越大。可以看得出,第一主成分对各个变量解释得都很充分。而最后的几个主成分和原先的变量就不那么相关了。

可以把第一和第二主成分的载荷点出一个二维图以直观地显示它们如何解释原来的变量的。这个图叫做载荷图。

该图左面三个点是数学、物理、化学三科,右边三个点是语文、历史、外语三科。图中的六个点由于比较挤,不易分清,但只要认识到这些点的坐标是前面的第一二主成分载荷,坐标是前面表中第一二列中的数目,还是可以识别的。

对于我们的数据,SPSS因子分析输出为 这里,第一个因子主要和语文、历史、英语三科有很强的正相关;而第二个因子主要和数学、物理、化学三科有很强的正相关。因此可以给第一个因子起名为“文科因子”,而给第二个因子起名为“理科因子”。从这个例子可以看出,因子分析的结果比主成分分析解释性更强。

这两个因子的系数所形成的散点图(虽然不是载荷,在SPSS中也称载荷图, 可以直观看出每个因子代表了一类学科

计算因子得分 可以根据前面的因子得分公式(因子得分系数和原始变量的标准化值的乘积之和),算出每个学生的第一个因子和第二个因子的大小,即算出每个学生的因子得分f1和f2。 人们可以根据这两套因子得分对学生分别按照文科和理科排序。当然得到因子得分只是SPSS软件的一个选项(可将因子得分存为新变量、显示因子得分系数矩阵)

因子分析和主成分分析的一些注意事项 可以看出,因子分析和主成分分析都依赖于原始变量,也只能反映原始变量的信息。所以原始变量的选择很重要。  可以看出,因子分析和主成分分析都依赖于原始变量,也只能反映原始变量的信息。所以原始变量的选择很重要。 另外,如果原始变量都本质上独立,那么降维就可能失败,这是因为很难把很多独立变量用少数综合的变量概括。数据越相关,降维效果就越好。 在得到分析的结果时,并不一定会都得到如我们例子那样清楚的结果。这与问题的性质,选取的原始变量以及数据的质量等都有关系 在用因子得分进行排序时要特别小心,特别是对于敏感问题。由于原始变量不同,因子的选取不同,排序可以很不一样。

DOE & EXCEL, SPSS application 艾对元(AI Duiyuan) School: Food science & engineering, GSAU. Thank you Time: october. 19th, 2011.