HOM damping methods for CEPC 报告人:Zhenchao LIU 2015.10.30
General info of CEPC C = 54.374 km CEPC is a Circular Electron Positron Collider to study the Higgs boson Critical parameters: Beam energy: 120GeV Circumference: ~54 km SR power: 51.7 MW/beam 8*arcs 2*IPs 8 RF cavity sections Filling factor of the ring: ~70% Length of the straight sections are compatible with SppC requirement P P.S. IP1 IP4 IP3 IP2 D = 17.3 km ½ RF RF C = 54.374 km
CEPC cavity requirement Parameters CEPC-Collider CEPC-Booster Cavity Type 650 MHz 5-cell Nitrogen-doped Nb 1.3 GHz 9-cell Vcav / VRF 17.9 MV / 6.87 GeV 20 MV / 5.12 GeV Eacc (MV/m) 15.5 19.3 Q0 4E10 @ 2K 2E10 @ 2K Cryomodule number 96 (4 cav. / module) 32 (8 cav. / module) RF coupler power / cav. (kW) 280 c.w. 20 RF source number 192 (800 kW / 2 cav.) 256 (25 kW / cav.) HOM power / cav. (kW) 3.5 0.005 HOM damper coaxial/waveguide@2K + ferrite @ RT coupler @ 2K + ceramic @ 80K Frequency: 650MHz Gradient: 15.5MV/m High Q0>4x1010@2K HOMs power damping (several kilo watts) Low loss factor No trapped mode
HOM damping methods High average power handling Wide frequency range, Short bunch length requires broadband HOM damping scheme: few GHz to tens of GHz three major varieties of elliptical cavity HOM couplers: beam pipe absorber, coaxial (loop/antenna) coupler and waveguide coupler New method using slotted cavity with waveguide
Slotted cavity with waveguide
Waveguide
Coaxial
650 MHz Cavity Impedance Budget To keep the beam stable, the radiation damping time should be less than the rise time of any of the oscillation modes. In the resonant condition, the threshold shunt impedances are H.J. Zheng’s talk
CEPC Main Ring 5-Cell Cavity 5-cell cavity with two asymmetrical end groups + JLab HOMs waveguide couplers Higher Order Modes: HOM power for 2 beam is 3.63kW/cavity Qe as low as possible Identification of dangerous modes HOM couplers: The structure of waveguide HOM coupler is simple. Cutoff is natural rejection filter for fundamental mode. HOM power can be dissipated in loads located at ambient temperature. High power handling capability. H.J. Zheng’s talk
99.5% of the RF heat is absorbed in tiles M. Liepe, SRF2011
恒温器 4x650MHz 5-cell cavity/module ~1.4 m length/cavity 5 HOM absorbers/cavity x4=20absorbers/module 1 power coupler/cavity x4=4 coupler/module
狭缝波导高阶模吸收结构 左端束管放置功率耦合器口,进行功率馈送。功率耦合器前端连接环形器与负载,进行SOM与HOM吸收(TM01n)。 不需要基模滤波结构。
低温结构 可采用与ILC低温恒温器类似结构 高阶模提取结构可采用耦合器 类似双窗或单窗结构,通过波纹管 降低漏热。 参照耦合器漏热, 2K静态+动态<1W, 80K静态+动态<10W, 高阶模吸收器在恒温器侧面 不占用纵向空间 2K 300K 2K 80K 5K 5K 热锚 与beam pipe HOM absorber连接
陶瓷窗位置 方案1: 方案2: 陶瓷窗位置 矩形波导端部若直接放置陶瓷窗,需焊接一约1000x22mm尺寸陶瓷片。尺寸较大。 焊接工作量较大 方案2: 类似耦合器设计,在同轴段放置陶瓷窗,进行密封。 技术成熟,可参照耦合器设计。 KEK input coupler IHEP KEK type 陶瓷窗位置
可用的HOM damper BII超导腔束管型高阶模吸收器 其他束管型吸收器 Cornell BII
恒温器结构 4x650MHz 5-cell cavity/module 1.4 m length/cavity 3 HOM absorbers/cavity x4=12absorbers/module 1 power coupler/cavity x4=4 coupler/module 。。。。 5-cell cavity 。。。。 。。。。
Tunnel Cross Section – SPPC + CEPC Magnets Drill/Blast Method 需考虑恒温器横向的HOM吸收器位置 6 m
总结 波导型超导腔 狭缝波导型超导腔 可以实现大功率高阶模提取,但是目前还没有被实际应用,需要进一步检验。 阻抗比较临界,需要超导腔差异化制造。 需重点排除trapped mode。制作实验样腔并测试。 需在常温端吸收高阶模功率,需要控制波导漏热。 研制波导型高阶模吸收器 狭缝波导型超导腔 可以实现大功率高阶模提取,对一支1.3GHz铌样腔进行了垂直测试 阻抗低于波导型超导腔约一个量级,能够满足CEPC阻抗的要求。超导腔自然加工的公差差异即可。 无trapped mode。 采用矩形波导-同轴-束管型高阶模吸收器,结构紧凑,技术成熟。
建议下一步计划 波导型超导腔 狭缝波导型超导腔 制造一支实验样腔并进行高阶模测试,排除trapped mode。 实际测试各HOM阻抗 研制HOM提取结构及HOM吸收器 研制调谐器 设计恒温器 狭缝波导型超导腔 制造一支实验样腔进行测试,或在现有1.3GHz 3-cell超导腔上测试,650MHz超导腔可以通过比例放大得到。HOM参数应具有一致性。 测试各HOM模式阻抗 研制超导腔HOM提取结构,测试BII HOM吸收器对不同频率HOM的吸收曲线,若满足狭缝波导型超导腔HOM频率分布即可采用。 研制波导型HOM吸收器
感谢高杰老师、郑洪娟等的讨论。
谢谢!
Monopole modes Slotted 5-cell cavity Normal
Dipole modes Normal Slotted 5-cell cavity