Randomized Algorithms

Slides:



Advertisements
Similar presentations
Chapter 2 Combinatorial Analysis 主講人 : 虞台文. Content Basic Procedure for Probability Calculation Counting – Ordered Samples with Replacement – Ordered.
Advertisements

Course 1 演算法: 效率、分析與量級 Algorithms: Efficiency, Analysis, and Order
Healthy Breakfast 第四組 電子一甲(電資一) 指導老師:高美玉 組長:B 侯昌毅
Performance Evaluation
-Artificial Neural Network- Hopfield Neural Network(HNN) 朝陽科技大學 資訊管理系 李麗華 教授.
第三章 隨機變數.
Chapter 8 Liner Regression and Correlation 第八章 直线回归和相关
XI. Hilbert Huang Transform (HHT)
Leftmost Longest Regular Expression Matching in Reconfigurable Logic
3-3 Modeling with Systems of DEs
Euler’s method of construction of the Exponential function
-Artificial Neural Network- Adaline & Madaline
Some Effective Techniques for Naive Bayes Text Classification
指導教授:許子衡 教授 報告學生:翁偉傑 Qiangyuan Yu , Geert Heijenk
Population proportion and sample proportion
模式识别 Pattern Recognition
實 驗 研 究 法 多因子實驗設計 指導老師:黃萬居教授 學生:陳志鴻 m
Differential Equations (DE)
Chapter 4 歸納(Induction)與遞迴(Recursion)
微積分網路教學課程 應用統計學系 周 章.
SAT and max-sat Qi-Zhi Cai.
Chapter 6 Graph Chang Chi-Chung
Sampling Theory and Some Important Sampling Distributions
Decision Support System (靜宜資管楊子青)
第二十九單元 方向導數與梯度.
Course 9 NP Theory序論 An Introduction to the Theory of NP
主讲人: 吕敏 { } Spring 2016,USTC 算法基础 主讲人: 吕敏 { } Spring 2016,USTC.
本章大綱 2.1 The Limit of a Function函數的極限 2.2 Limit Laws極限的性質
VI. Brief Introduction for Acoustics
Interval Estimation區間估計
子博弈完美Nash均衡 我们知道,一个博弈可以有多于一个的Nash均衡。在某些情况下,我们可以按照“子博弈完美”的要求,把不符合这个要求的均衡去掉。 扩展型博弈G的一部分g叫做一个子博弈,如果g包含某个节点和它所有的后继点,并且一个G的信息集或者和g不相交,或者整个含于g。 一个Nash均衡称为子博弈完美的,如果它在每.
ZEEV ZEITIN Delft University of Technology, Netherlands
Decision Support System (靜宜資管楊子青)
Advisor : Prof. Frank Y.S. Lin Presented by Yen-Yi, Hsu
模式识别 Pattern Recognition
Chapter 5 Recursion.
Chp.4 The Discount Factor
高性能计算与天文技术联合实验室 智能与计算学部 天津大学
2019/4/8 A Load Balancing Mechanism for multiple SDN Controllers based on Load Informing Strategy Miultiple controller 的 load balancing 機制,使用一個叫 Load informing.
VII. Data Compression (A)
每周三交作业,作业成绩占总成绩的15%; 平时不定期的进行小测验,占总成绩的 15%;
计算机问题求解—论题4.9 随机算法的概念 陶先平 2017年5月15日.
抽樣分配 Sampling Distributions
Chp.4 The Discount Factor
关联词 Writing.
以時間序列分析法偵測 台灣一等一級水準網之殘留系統誤差 Detecting Remained Systematic Errors In The First-Order ClassⅠLeveling Network of Taiwan By Using Time series 指導教授:許榮欣 學生:林曾進.
Inter-band calibration for atmosphere
Chp.4 The Discount Factor
Introduction to Probability Theory ‧1‧
演算法分析 (Analyzing Algorithms)
Efficient Query Relaxation for Complex Relationship Search on Graph Data 李舒馨
Review of Statistics.
磁共振原理的临床应用.
计算机问题求解 – 论题 图的连通度 2018年11月13日.
(二)盲信号分离.
 隐式欧拉法 /* implicit Euler method */
An Quick Introduction to R and its Application for Bioinformatics
More About Auto-encoder
5. Combinational Logic Analysis
怎樣把同一評估 給與在不同班級的學生 How to administer the Same assessment to students from Different classes and groups.
Arguments to the main Function and Final Project
Class imbalance in Classification
簡單迴歸分析與相關分析 莊文忠 副教授 世新大學行政管理學系 計量分析一(莊文忠副教授) 2019/8/3.
Principle and application of optical information technology
INTRODUCTION Making 24 with 4 cards DETAILS TEST GAME GAME.
Gaussian Process Ruohua Shi Meeting
Presentation transcript:

Randomized Algorithms The Chernoff bound Speaker: Chuang-Chieh Lin Advisor: Professor Maw-Shang Chang National Chung Cheng University 2018/12/8

Computation Theory Lab, CSIE, CCU, Taiwan Outline Introduction The Chernoff bound Markov’s Inequality The Moment Generating Functions The Chernoff Bound for a Sum of Poisson Trials The Chernoff Bound for Special cases Set Balancing Problem Error-reduction for BPP References 2018/12/8 Computation Theory Lab, CSIE, CCU, Taiwan

Computation Theory Lab, CSIE, CCU, Taiwan Introduction Goal: The Chernoff bound can be used in the analysis on the tail of the distribution of the sum of independent random variables, with some extensions to the case of dependent or correlated random variables. Markov’s Inequality and Moment generating functions which we shall introduce will be greatly needed. 2018/12/8 Computation Theory Lab, CSIE, CCU, Taiwan

Math tool Professor Herman Chernoff’s bound, Annal of Mathematical Statistics 1952 2018/12/8 Computation Theory Lab, CSIE, CCU, Taiwan

Computation Theory Lab, CSIE, CCU, Taiwan Chernoff bounds I n i t s m o g e r a l f , h C ® b u d v - X w : y > P [ ¸ ] · E q ¡ + T z p . A moment generating function 一開始大家並不熟悉E[e^{tX}],慢慢就會比較了解 2018/12/8 Computation Theory Lab, CSIE, CCU, Taiwan

Computation Theory Lab, CSIE, CCU, Taiwan Markov’s Inequality F o r a n y d m v i b l e X ¸ > , P [ ] · E : W c u s M k I q t h f C j ¡ = ( ) 2 V ’ ’ 跟前面的 Chernoff bound 是不是很像? 2018/12/8 Computation Theory Lab, CSIE, CCU, Taiwan

Proof of the Chernoff bound ’ I t f o l w s d i r e c y m M a k v n q u : P [ X ¸ ] = · E So, how to calculate this term? 2018/12/8 Computation Theory Lab, CSIE, CCU, Taiwan

Moment Generating Functions X ( t ) = E [ e ] : T h i s f u n c o g a m b w r - y d ® v l ¯ 在 t=0 那一點對M_X(t) 作 i 次微分 T h e i t m o n f r . v X R e m a r k : E [ X i ] = P x 2 ¢ 2018/12/8 Computation Theory Lab, CSIE, CCU, Taiwan

Moment Generating Functions (cont’d) W e c a n s i l y w h t m o g r f u k : d M X ( ) ¯ = E [ ] P 2018/12/8 Computation Theory Lab, CSIE, CCU, Taiwan

Moment Generating Functions (cont’d) The concept of the moment generating function (mgf) is connected with a distribution rather than with a random variable. Two different random variables with the same distribution will have the same mgf. 2018/12/8 Computation Theory Lab, CSIE, CCU, Taiwan

Moment Generating Functions (cont’d) : I f M X ( ) = Y o r l 2 ¡ ; s m e > , h n d v i b u . w p + L 1 k g T P y ’ 2018/12/8 Computation Theory Lab, CSIE, CCU, Taiwan

Moment Generating Functions (cont’d) X a n d Y r e t w o i p m v b l s , h M + ( ) = : P E [ ] H u { c . 2018/12/8 Computation Theory Lab, CSIE, CCU, Taiwan

Chernoff bound for the sum of Poisson trials The distribution of a sum of independent 0-1 random variables, which may not be identical. Bernoulli trials: The same as above except that all the random variables are identical. 2018/12/8 Computation Theory Lab, CSIE, CCU, Taiwan

Chernoff bound for the sum of Poisson trials (cont’d) X i : = 1 ; n m u t a l y d e p - r o v b s w h P [ ] ¡ . L + E ¹ M ( ) ¢ · (Since 1 + y ≤ e y.) F M X ( t ) = E [ e ] 1 2 : n · p + ¡ ¹ , s i c . We will use this result later. 2018/12/8 Computation Theory Lab, CSIE, CCU, Taiwan

Chernoff bound for the sum of Poisson trials (cont’d) 1 : L t X = + ¢ n , w ; a i d p l s u c P [ ] f 2 . ( ) y > ¸ ¹ · ³ ´ ¡ 3 R 6 由前一頁的結果來得到這個定理。 (1) 不好用,所以我們去推導出(2)來用,而當我們知道X之值很大(大於等於六倍期望值)時,可以套用(3) 2018/12/8 Computation Theory Lab, CSIE, CCU, Taiwan

Computation Theory Lab, CSIE, CCU, Taiwan Proof of Theorem 1: F o r a n y d m v i - b l e X ¸ > , P [ ] · E : B y M a r k o v i n e q u l t , f > w h P [ X ¸ ( 1 + d ) ¹ ] = · E ¡ . F s T p 2 < 3 g m b c R 6 5 H ³ ´ (2)和(3)分別可由(1)以微積分的證明方式和簡單的代數運算推導而得, 所以重要的是要會推導(1)。 (2)可以先算f(d) = d - (1+d) ln (1+d) + d^2/3 的一階導數和二階導數,會發現當d=0時,一階導數為0且二階導數小於0,故f(0)為極大值。 from (1) 2018/12/8 Computation Theory Lab, CSIE, CCU, Taiwan

Computation Theory Lab, CSIE, CCU, Taiwan probability Similarly, we have: X ¹ ¡ d ¹ ¹ + d T h e o r m : L t X = P n i 1 , w ; a d p s l u c [ ] . ¹ E f < ( ) · ¡ ³ ´ 2 C y F j ¸ 3 現在我們應該要知道為什麼要算 Pr[X\leq (1\pm d)\mu] 的原因。 2018/12/8 Computation Theory Lab, CSIE, CCU, Taiwan

Computation Theory Lab, CSIE, CCU, Taiwan Example: Let X be the number of heads of n independent fair coin flips. Applying the above Corollary, we have: P r [ j X ¡ n = 2 ¸ p 6 l ] · e x ( 1 3 ) : 4 B y C h b s v i q u a t , . E V w Better!! ’ 由想要的機率結果去回推X的範圍, 或是由我們想要的X之範圍去估算偏離該範圍的機率。 由本張投影片可以知道Chernoff bound 比 Chebyshev’s inequality 來的好。(exponentially small in tail probability) 2018/12/8 Computation Theory Lab, CSIE, CCU, Taiwan

Better bounds for special cases h e o r m L t X = 1 + ¢ n , w ; : a i d p v b l s P [ ] ¡ 2 . F y > ¸ · f E ( ) S c ! u g Q B e^t 由 Maclaurin series 得到。 E[e^{tX_i}] 只剩下偶次方項的 e^t 與 e^{-t} 之和 最後,E[e^{tX}] 就是上面的式子之乘積。 所求的Pr[X\geq a]就可以利用前面所講的方法,把他變成指數函數來代Chernoff bound,就可以求出來。 2018/12/8 Computation Theory Lab, CSIE, CCU, Taiwan

Better bounds for special cases (cont’d) y L e t X = 1 + ¢ n , w h ; : i d p m v b s P [ ] ¡ 2 . F > j ¸ · Y ( ) f g c 2018/12/8 Computation Theory Lab, CSIE, CCU, Taiwan

Better bounds for special cases (cont’d) y L e t Y = 1 + ¢ n , w h ; : i d p m v b s P [ ] 2 . ¹ E ( ) F > ¸ · ¡ 3 4 僅僅是利用Y_i = X_i + 1來作變數代換而已。 所以可以當習題就好。 Note: The details can be left for exercises. (See [MU05], pp. 70-71.) 2018/12/8 Computation Theory Lab, CSIE, CCU, Taiwan

An application: Set Balancing Given an n  m matrix A with entries in {0,1}, let Suppose that we are looking for a vector v with entries in {1, 1} that minimizes B @ a 1 2 : m . n C A v = c 行:物種(species) 列:特徵(features) 當||Av||_{\infty}的值愈小,表示該feature的正和負差不多,那麼這分法(即v)對於這feature就是balance了 簡單來講,就是把給定的物種分兩堆,使得這兩堆裡面的物種盡可能有各式各樣的物種,才有可能有兩個平衡的生態系。 目標: 兩群物種中,特徵的最大差距(最不平衡)之值要最小。 k A v 1 = m a x i ; : n j c 2018/12/8 Computation Theory Lab, CSIE, CCU, Taiwan

Set Balancing (cont’d) The problem arises in designing statistical experiments. Each column of matrix A represents a subject in the experiment and each row represents a feature. The vector v partitions the subjects into two disjoint groups, so that each feature is roughly as balanced as possible between the two groups. 當||Av||_{\infty}的值愈小,表示該feature的正和負差不多,那麼這分法(即v)對於這feature就是balance了 2018/12/8 Computation Theory Lab, CSIE, CCU, Taiwan

Set Balancing (cont’d) For example, A: v: 斑馬 老虎 鯨魚 企鵝 肉食性 1 陸生 哺乳類 產卵 1 1 A v : 1 2 1 希望對每個特性都能分得均勻。 當||Av||_{\infty}的值愈小,表示該feature的正和負差不多,那麼這分法(即v)對於這feature就是balance了 W e o b t a i n h k A v 1 = 2 . 2018/12/8 Computation Theory Lab, CSIE, CCU, Taiwan

Set Balancing (cont’d) For example, A: v: 斑馬 老虎 鯨魚 企鵝 肉食性 1 陸生 哺乳類 產卵 1 1 A v : 1 1 希望對每個特性都能分得均勻。 當||Av||_{\infty}的值愈小,表示該feature的正和負差不多,那麼這分法(即v)對於這feature就是balance了 W e o b t a i n h k A v 1 = . 2018/12/8 Computation Theory Lab, CSIE, CCU, Taiwan

Set Balancing (cont’d) : G v £ m r x A w h s o 1 , - d f ; ¡ u = . T F y q p P [ j ¸ 4 ] · 2 randomly chosen A v m n c  = n 2018/12/8 Computation Theory Lab, CSIE, CCU, Taiwan

Proof of Set Balancing: d e t h - w A a = ( ; 1 ¢ m ) . S u p k I < 4 l , c y j v · ¸ z Z b / 2 g + ¡ B ® [ ] P r [ n S i = 1 ( j Z > p 4 m l ) ] A v m n ai 2018/12/8 Computation Theory Lab, CSIE, CCU, Taiwan

Another application: Error-reduction in BPP The class BPP (for Bounded-error Probabilistic Polynomial time) consists of all languages L that have a randomized algorithm A running in worst-case polynomial time that for any input x  *, x  L  Pr[A(x) accepts]  ¾ . x  L  Pr[A(x) rejects]  ¾ . That is, the error probability is at most ¼. 2018/12/8 Computation Theory Lab, CSIE, CCU, Taiwan

Error-reduction in BPP (cont’d) Consider the following variant definition: The class BPP (for Bounded-error Probabilistic Polynomial time) consists of all languages L that have a randomized algorithm A running in worst-case polynomial time that for any input x  * with | x | = n and some positive integer k  2, x  L  Pr[A(x) accepts]  ½ + n k. x  L  Pr[A(x) rejects]  ½ + n k. 2018/12/8 Computation Theory Lab, CSIE, CCU, Taiwan

Error-reduction in BPP (cont’d) The previous two definitions of BPP are equivalent. We will show that the latter one can be transferred to the former one by Chernoff bounds as follows. Let MA be an algorithm simulating algorithm A for “t” times and output the majority answer. That is, if there are more than t/2 “accepts”, MA will output “Accept”. Otherwise, MA will output “Reject”. 2018/12/8 Computation Theory Lab, CSIE, CCU, Taiwan

Error-reduction in BPP (cont’d) Let Xi , for 1 i  t, be a random variable such that Xi = 1 if the ith execution of MA (running algorithm A) produces a correct answer and Xi = 0 otherwise. That is, accepts if x  L and rejects if x  L. L e t X = P i 1 , w h a v ¹ ¸ ( 2 + n k ) ¢ . S o t 2 · n k + ¢ ¹ X . 2018/12/8 Computation Theory Lab, CSIE, CCU, Taiwan

Error-reduction in BPP (cont’d) Recall one of the previous results of the Chernoff bound: T h e o r m : L t X = P n i 1 , w ; a d p s l u c [ ] . ¹ E f < ( ) · ¡ ³ ´ 2 2018/12/8 Computation Theory Lab, CSIE, CCU, Taiwan

Error-reduction in BPP (cont’d) W e h a v t r o p b i l y P [ X < = 2 ] · n k + ¢ ¹ µ 1 ¡ ¶ ( ) : L e t ¡ n k ( + 2 ) · 1 = 4 , w c a d r i v h l u o f s . 2018/12/8 Computation Theory Lab, CSIE, CCU, Taiwan

Error-reduction in BPP (cont’d) y t a k i n g l o r h m b s d e , w v ¡ ( + 2 ) · 1 4 S c ¢ P [ X < = ] : 2018/12/8 Computation Theory Lab, CSIE, CCU, Taiwan

Error-reduction in BPP (cont’d) Since is still polynomial, the running time of MA will be still polynomial. Hence the latter definition for BPP is equivalent to the former one! t = l n 4 ¢ ( 2 k + ) 2018/12/8 Computation Theory Lab, CSIE, CCU, Taiwan

Computation Theory Lab, CSIE, CCU, Taiwan References [MR95] Rajeev Motwani and Prabhakar Raghavan, Randomized algorithms, Cambridge University Press, 1995. [MU05] Michael Mitzenmacher and Eli Upfal, Probability and Computing - Randomized Algorithms and Probabilistic Analysis, Cambridge University Press, 2005. 蔡錫鈞教授上課投影片 Professor Valentine Kabanets’s lectures 2018/12/8 Computation Theory Lab, CSIE, CCU, Taiwan

Thank you.