有氧代謝(Aerobic Metabolism) 營養物分解所產生的NADH與FADH2會經由電子傳遞鏈(簡稱ETC)將電子逐步的傳遞給氧分子,同時由伴隨大量的ATP生成。 pyruvate oxidation的pathway是經由citric acid cycle是Han Krebs 在1937 年首先提出的。之後發現脂肪酸與胺基酸分解後的代謝物也是進入TCA循環產生NADH與FADH2 因此TCA循環是有氧代謝重要的一部分。
16.1 乙醯輔酶 A(活化態乙酸)的生成 由糖解作用產生的丙酮酸被進一步氧化成水和二氧化碳,而不是被還原成乳酸、乙醇或是其他發酵產物。此分解代謝的有氧階段稱之為呼吸作用(respiration)。 就廣義的生理學或巨分子觀點而言,呼吸作用是指多細胞生物體攝取氧氣並釋放出二氧化碳的過程。此過程更精確的名稱為細胞呼吸作用(cellular respiration)。 P.651 第 16 章 檸檬酸循環
細胞呼吸經由三個主要階段(圖16-1)。第一階段,有機燃料分子(葡萄糖、脂肪酸和某些胺基酸)經氧化而產生以乙醯輔酶 A(acetyl-CoA)的乙醯基型式存在的兩個碳的分子片段。 在第二階段中,乙醯基被投入檸檬酸循環,經由酵素作用將它們氧化成二氧化碳;而釋出的能量則保留在還原態的電子攜帶者 NADH 和 FADH2 之中。 P.651 第 16 章 檸檬酸循環
在呼吸作用的第三階段中,這些還原性輔酶會自行氧化而產生質子(H+)和電子。這些電子透過一連串的電子攜帶分子(或稱呼吸鏈)而傳遞給氧分子(也就是最後的電子接受者)。在電子轉移過程中,所釋出的大量能量藉由稱為氧化磷酸化(第19 章)的過程,以 ATP 形式作為保存。
圖 16.1 細胞呼吸作用三階段中的蛋白質、脂肪和醣類的代謝作用。 圖 16.1 細胞呼吸作用三階段中的蛋白質、脂肪和醣類的代謝作用。 階段 1 :脂肪酸、葡萄糖和一些胺基酸產生乙醯輔酶 A 。 階段 2 :檸檬酸循環中氧化醯基,包括取得電子的四個步驟。 階段 3 :電子被NADH和FADH2 攜帶注入粒線體(在細菌則為漿膜)電子攜帶者─呼吸鏈─最後將氧還原為水。此電子流最後會產生 ATP 。 P.652
圖14-3 糖解反應形成的丙酮酸可能之三種異化命運。丙酮酸可作為許多同化反應的前驅物,此處並未顯示出來。 p.566
圖 16.7 檸檬酸循環的反應。 P.658
檸檬酸循環的第一個反應是兩個碳的aceyl-CoA與四個碳的草醋酸(oxaloacetate)形成六個碳的檸檬酸,在接下來的反應步驟,共形成兩個CO2、3個NADH、一個FADH2與1個GTP。
乙醛酸循環(The glyoxylate cycle) 植物、真菌、原生動物與一些細菌因為具有glyoxylate cycle可以利用二個碳的化合物,如ethanol、acetate、acetyl-CoA與脂肪酸等製造葡萄糖(Glucose),在植物glyoxylate cycle是發生glyoxysome,而其真核微生物則發生在cytoplasm。 註:動物無法利用acetyl-CoA製造glucose(只能利用lactate、glycerol、alanine與一些α-酮酸等來製造葡萄糖)。
乙醛酸循環(glyoxylate cycle)
圖9.14 乙醛酸循環在糖質新生中的角色
氧化磷酸化反應(Oxidative phosphorylation) Electro-transfer reaction in mitochondria ATP synthesis 氧化磷酸化反應: 1粒線體中的電子傳遞反應 2 ATP的合成 Regulation of oxidative phosphorylation 氧化磷酸化反應的調節
電子傳遞鏈(Electron transport chain) ETC是指位於粒線體內膜中,一系列傳遞電子的分子,其功能是將NADH、FADH2釋出的電子傳遞給氧分子。 在電子傳遞的過程中,攜帶電子的物質的還原電位逐漸增加,即電位(∆E0’>0) 根據Nernst方程式: ΔG= - n FΔE0’ 因為ΔE0’是正值,因此△G是負值過程中會伴隨大量自由能釋。ETC系統的特性是利用電位的變化造成膜內外H+濃度的改變。
電子傳遞鏈組成分子 主要有4個complex組成: 1.Complex I: NADH dehydrogenase complex 功能:催化電子由NADH傳至UQ(ubiquinone)。 2.Complex II: Succinate dehydrogenase complex:主要是由Succinate dehydrogenase與2個硫鐵蛋白組成。功能是催化電子由FADH2傳至UQ。 3 Complex III是由2個B-type cytochrome、cytochrome C1與一個硫鐵分子組成。功能:將UQH的電子傳遞至cytochrome C 4 Complex IV:由cytochrome oxidase組成 功能:催化4個電子與O2形成H2O。 每個complex皆包含數個蛋白質與prothetic group。另外還有兩個參與的分子Coenzyme Q與Cytochrome C。
圖10.1 電子傳遞鏈
圖10.3 輔酶Q的結構和氧化狀態
圖10.6 細胞色素c的結構
電子傳遞造成電位能生成 在電子傳遞的過程中,NADH、FADH2是電子的提供者,氧則是電子的接受者。 整個傳遞過程電壓改變值約為1.14V,而在傳遞時,電位差變化較大者會伴隨大量自由能生成,即合成ATP最佳的位置。 ETC的組成分子:在真核細胞ETC的組成分子是位於粒線體的內膜,而原核細胞的的ETC則位於胞膜。
粒線體中電子傳遞鏈的能量關係
Methods for determining the sequence of electron carriers 還原半電位表
電子傳遞鏈中的輔基 (a)2個鐵(Fe)、2個硫(S) (b)4個鐵、4個硫中心[即:鐵-硫中心(Fe-S; Iron-Sulfur Centers)]
Prosthetic groups of cytochromes Prosthetic groups of cytochromes. Each consists of four five-membered, nitrogen-containing rings in a cyclic structure called a porphyrin. The four nitrogen atoms are coordinated with a central Fe ion, either Fe2+ or Fe3+.
Absorption spectra of cytochrome c in its oxidized (red) and reduced (blue) forms. Also labeled are the characteristic a, b, and g bands of the reduced form.
由琥珀酸(succinate)、甘油-3-磷酸(glycerol-3-phosphate)與脂肪酸到UQ的電子傳遞路徑
The vectorial equation for the process is: Summary of the flow of electrons and protons through the four complexes of the respiratory chain The vectorial equation for the process is: NADH + 11H+ + 0.5O2 → NAD+ + 10H+ + H2O N P
電子傳遞的特殊抑制劑 一些分子具有抑制電子傳遞的特性。這些分子常用來偵測電子傳遞鏈的還原電位。Retenone與amytal可以抑制NADH dehydrogenase (complex I)。 CO,azide(N3-)與cyanide(CN-)抑制cytochrome oxidase。 antimycin A可抑制cyt b。
In the presence of an electron donor and O2, each inhibitor causes a characteristic pattern of oxidized/reduced carriers; those before the block become reduced (blue), and those after the block become oxidized (red).電子傳遞鏈中電子傳遞順序與其阻斷劑。
圖10.10 ㄧ些粒線體電子傳遞鏈的抑制劑
Electron carriers function in multienzyme complexes The electron carriers of the respiratory chain are organized into membrane-embedded supramolecular complexes that can be physically separated. 呼吸鏈的電子攜帶者是位於膜中的巨大蛋白複合物,且可分離出。
Separation of functional complexes of the respiratory chain 分離呼吸鏈具功能的複合體
The overall reaction catalyzed by Complex IV 4 Cyt c (reduced) + 8H+ + O2 → 4 cyt c (oxidized) + 4 H+ + 2 H2O Complex IV含銅離子,亦具兩種作用:1電子傳遞。2質子的輸送。
The vectorial equation for the process is: Summary of the flow of electrons and protons through the four complexes of the respiratory chain The vectorial equation for the process is: NADH + 11H+ + 0.5O2 → NAD+ + 10H+ + H2O N P
1961年,Peter Mitchell提出一個稱為米契爾理論(Mitchell’s model)又稱化學滲透偶合理論(chemiosmotic coupling theory) 1當電子通過ETC時,proton(H+)會由粒線體的matrix輸送至intermembrane space形成電化學的proton gradient,是一種protomotive force,即質子趨動力。 2當intermembrane space的質子累積至一定程度後,它會經由內膜間的一個通道讓質子流過然後回到基質(matrix),這個通道是一個ATPase,當質子通過ATPase時ATP合成就發生。
Proton-motive force
Mitchell假設電子的傳遞導致自由能的釋致,由ETC產生的質子趨動能會伴隨ADP與Pi合成ATP。 Because the transfer of two electrons from NADH to O2 is accompanied by the outward pumping of 10 H+, roughly 200 kJ of 220 kJ released by oxidation of a mole of NADH is conserved in the proton gradient. 估算1 mole NADH約可打出10 mole個質子,花費約200-220 kj 的能量。
圖10.11 化學滲透理論
圖10.12 化學滲透模型的概觀
Chemiosomitic model
圖10.14 ATP合成
支持chemiosmotic coupling theory的証據 1在呼吸時的粒線體能排出protons,當氧加到含有mitochondria的緩衝溶液,可以量到pH的梯度變化。 2如果將粒線的內膜破壞,則ATP的合成會停止。 3一些已知能破壞proton gradient的分子也能抑制ATP的合成,依chemiosmotic coupling theory,破壞proton gradient會使食物變成產熱而不是產ATP。
去偶合劑(Uncoupler): 可攜帶H+離子進出內膜,導致proton gradient的破壞的物質。使得電子傳遞與oxidative phosphorylation無法伴隨發生(coupling)。如2,4,Dinitrophenol (DNP)、FCCP。 離子泳劑(Ionosphere): 是一個hydrophobic分子,能插入膜中,然後形成一個通道破壞膜內外的離子梯度。如抗生素Gramicidin。
Two chemical uncouplers of oxidative phosphorylation
圖10.13 去偶合劑(uncoupler)
oxidative phosphorylation如果無法伴隨(coupling)形成ATP,對一些特殊的生物是有助益的,因為它產生的熱可以用來維持冬眠動的生存。 在正常狀況下electron transport與ATP成是緊密的結合在一起,所以產熱的情況相當少。 一些特別的脂肪組織稱brown fat中,粒線體ETC產生的能量無法產生ATP,而是以熱量形式釋出。由於這些內膜含有一個32 kDa的蛋白,稱uncoupling protein或thermogenin它能破壞proton gradient因此導致大量的能量釋出。
葡萄糖的完全氧化 一分子的葡萄糖能產生多少個ATP呢? 由於NADH無法通過粒線體的外膜,因此由糖解途徑(glycolysis)在胞質產生的NADH,需要一些穿梭機制(shuttle)的作用,才可將NADH轉至粒線體內。會造成完全氧化的能量有所不同 有兩個shuttle可媒介細胞質中的NADH進入粒線體內: 1 Glycerol phosphate shuttle: 2 Malate-Asparate shuttle:
穿梭機制從細胞質的NADH轉移電子到呼吸鏈:Glycerol phosphate shuttle
Glycerol 3-phosphate shuttle
蘋果酸-天門冬胺酸穿梭
Malate-asparate shuttle
1 Glycerol phosphate shuttle:這個過程會損失一個ATP,它是利用DHAP被還原成Glycerol-3-phosphate再穿過粒線體外膜,在內膜受glycerol-3-phosphate dehydrogenase催化再氧化成DHAP釋出FADH2。產生1.5 ATP. 肌肉與腦細胞 2 Malate-Asparate shuttle: 理論上在交換過程中並無ATP的損失,但需要轉胺反應的作用。 產生 2.5 ATP. 肝與心臟細胞
Mitochondrial production and disposal of superoxide(超氧歧的生成與清除) The passage of electrons from QH2 to cytochrome bL through Complex III, and passage of electrons from Complex I to QH2, involve 醌自由基(the radical Q) as intermediate. The the radical Q can, with a low probability, pass an electron to O2 in the reaction O2 + e- → 粒線體會產生superoxide:在複合體I電子傳遞的過程中,會產生醌自由基再轉移給氧形成超氧歧(superoxide ·O2- ) - . O2
氧化磷酸化作用的概念和反應性氧化物(ROS)在粒線體中形成
The superoxide free radical generated, ·O2- is very reactive and can damage enzymes, membrane lipids, and nucleic acids. Superoxide含自由基對酵素、膜與核酸具破壞性。
活氧物質:Reactive oxygen species (ROS) ROS包含超氧歧自由基(Superoxide radical) (.O2- )、過氧化氫(hydrogen peroxide) (H2O2)、氫氧自由基(hydroxyl radical) (.OH)與單一氧原子(singlet oxygen) (1O2)。 因為ROS相當reactive,易引起一些鏈鎖反應。如lipid peroxidation reaction: hydroxyl radical會攻擊一些脂肪酸,引起鏈鎖反應。食品加工時常會促進這種radical chain reaction,常需加入抗氧化劑,阻止radical chain reaction的反應。
Superoxide含自由基對酵素、膜與核酸具破壞性。 反應性氧化物 游離子(radical)
圖10.19 游離子連鎖反應
一些細胞為特殊的需要也會合成ROS 例如代謝外來分子(xenobiotics)(foreign molecule)與respiratory burst 呼吸爆發(respiratory burst)是白血球細胞胞利用來殺死細菌的機制。是一個ROS具破壞性的例子。當吞噬細胞結合細菌後,會提高O2的消耗近100倍,位於Phagolysome Membrane的NADPH oxidase會將O2轉成superoxide radical(.O2- )。
圖10.20 呼吸爆發現象
阻止氧化壓力的機制 一些酵素具有阻止oxidative stress的功能,如superoxide dimutase、catalase與glutathione peroxidase。 SOD (superoxide dimutase) 催化: 2 O2 + 2 H+ H2O2 + O2 在入類中,Cu-Zn SOD 位於細胞質內 Mn SOD則在粒線體內,兩者是同功酶
Catalase:是一個含heme的酵素 催化: 2 H2O2 2 H2O + O2 , RH2 + H2O2 R + 2 H2O Glutathione peroxidase: 是一個含Selenium的酵素,也是控制細胞過氧化物濃度的重要酵素。 催化: 2 GSH + ROOH GSSG + ROH + H2O 2 H2O2 2 H2O + O2
Glutathione reductase再將GSSG還原成GSH GSSG + NADPH + H+ 2 GSH + NADP+ NADPH主要是由pentose phosphate pathway提供
Mitochondrial production and disposal of superoxide
NADPH提供脂質(lipid)生合成與antioxidant機制所需的還原能,而NADPH是由pentose phosphate pathway的產物,pentose phosphate pathway在一些合成大量脂質的細胞是非常活躍的,如Adipocyte、adrenal contex、mannary glands與liver。它在紅血球細以胞也非常活躍,因為紅血球隨時遭到氧化的破壞。
抗氧化的分子 生物體也使用一些抗氧化的分子防止自由基的危害。 包括GSH、α-tocopherol (vitamin E)、ascorbic acid (vitamin C)與β-carotene。 vitamin E是一個很強的自由基清除者,是屬於phenolic antioxidants。酚是一個很有效的抗氧化劑,因為它具有共振的穩定性。
vitamin E在蔬菜油或種子油中蘊藏豐富,可防止胞膜受peroxyl radical的攻擊。大鼠缺乏vitamin E會造成魚鱗狀皮膚、肌肉無力與不孕。”tokos”希臘字是生小孩的意思,vitamin E在人類缺乏症則未知。
圖10.22 選擇的抗氧劑
β-carotene在動物中是retinol的先質,也是膜上重要的抗氧化劑。在植物中,β-carotene是carotenoids色素家族的一員,carotenoids是光合作用中吸收光線的色素,另外可阻止因光線形成的ROS。β-carotene另一個生化功能是充當視覺蛋白(opsin)的prothetic group。
α-生育酚 抗壞血酸(維生素C酸)
Ascorbic acid是有效的水溶性抗氧化劑,為細胞內ROS的清除者。Ascorbic acid阻止膜被自由基的破壞有2 個機制: 1直接至membrane與peroxyl radicals反應 2透過還原vitamin E的活性
圖10.23 藉由L-抗壞血酸可再生α-生育酚
ATP synthase Mitochondrial F1 has nine subunits of five different types, with the composition a3b3gde. Each of the three b subunits has one catalytic site for ATP synthesis. The crystallographic determination of the F1 structure by John E. Walker and colleagues revealed structural details very helpful in explaining the catalytic mechanism of the enzyme. ATP synthase 的結晶結構由John E. Walker 等解出。
Diagram of the FoF1 complex, deduced from biochemical and crystallographic studies
Binding-change model for ATP synthase
Chemiosmotic coupling allows nonintegral stoichiometries of O2 consumption and ATP synthesis If 10 protons are pumped out per NADH and 4 must flow in to produce 1 ATP, the proton-based P/O ratio is 2.5 for NADH as the electron donor and 1.5 for succinate. 1NADH可產生2.5 ATP 1FADH2可產生1.5 ATP
Adenine nucleotide and phosphate translocases (located in the inner mitochondrial membrane)
Uncoupled mitochondria in brown fat produce heat Most newborn mammals, including humans, have a type of adipose tissue called brown fat in which fuel oxidation serves not to produce ATP but to generate heat to keep the newborn warm. 大部分哺乳動物的幼兒,其脂肪組織具有棕色脂肪。可以行脂肪氧化,非產生ATP而產熱。因為棕色脂肪粒線體膜上具有獨特的蛋白Thermogenin又稱uncoupleing protein,會破壞質子梯度。
Mitochondrial P-450 oxygenases catalyze steroid hydroxylations Mitochondria are the site of biosynthetic reaction that produce steroid hormones, including the sex hormones, glucocorticoids, mineralocorticoids, and vitamin D hormone. 粒線體是合成類固醇與維生素D的胞器。 These hormones are synthesized from cholesterol or a related sterol in a series of hydroxylations catalyzed by the enzymes of the cytochrome P-450 family.這些荷爾蒙是由膽固醇經一系的羥化反應而成,而催化這些反應的酵素為cytochrome P-450 家族的成員。
In the hydroxylation reactions, one atom of molecular oxygen is incorporated into the substrate and the second is reduced to H2O: R-H + O2 + NADPH → R-OH + H2O + NADP+ 羥化反應的方程式如上。
Mitochondrial P-450 oxygenases catalyze steroid hydroxylations Cytochrome P-450 enzymes are situated in the inner mitochondrial membrane with their catalytic site exposed to the matrix. All of P-450 enzyme have a critical heme group. Its absorption at 450 nm gives this family its name。 Cytochrome P-450酵素位於粒線體內膜,其催化的位置曝露於基質中。具有血質(heme), 因對450奈米具有強的吸收故名之。
The path of electron flow in the mitochondrial P-450 system is involved a flavoprotein and an iron-sulfur protein that carry electrons from NADPH to the P-450 heme. P-450系統的電子流動路徑包含黃素蛋白、硫鐵蛋白與NADPH。
Mitochondria of adrenal gland, specialized for steroid synthesis
Another large family of P-450 enzymes Found in the ER of hepatocytes.另一大族群則位內質網,催化反應類似於粒線體的P-450 enzymes。主要用於解毒代謝。 Catalyze reactions similar to the mitochondrial P-450 reactions. Their substrates include a wide variety of hydrophobic compounds, many of which are xenobiotics-compounds not found in nature but synthesized industrially.
Hydroxylation of the hydrophobic compounds makes them more water soluble, and they can then be cleared by the kidneys and excreted in urine. 羥化不溶於水的疏水性的化合物,可增加其溶解度,有利於排出體外。
Path of electron flow in mitochondrial cytochrome P-450 reactions in adrenal gland
The role of mitochondria in apoptosis Besides their central role in ATP synthesis, mitochondria also participate in processes associated with cellular damage and death. 除了合ATP的角色,粒線體也參與細胞損壞與死亡的過程。 Apoptosis: Programmed cell death, in which a cell brings about its own death and lysis, signaled from outside or programmed in its genes, systematically degrading its own macromolecules.細胞凋亡,是計劃性的細死亡。當細胞接受到死亡訊息,會增加粒線體外膜的通透性。有利 於cytochrome c 漏出,漏出的cytochrome c會活化caspase 9,導致細胞凋亡的啟動。
When a cell receives a signal for apoptosis, one consequence is an increase in the permeability of the outer mitochondrial membrane ( the opening of the permeability transition pore complex (PTPC)), allowing escape of the cytochrome c normally confined in the intermembrane space. The released cytochrome c activates one of the proteolytic enzymes (caspase 9) responsible for protein degradation during apoptosis.
Role of cytochrome c in apoptosis
Mitochondrial genes Mitochondria contain their own genome, a circular double-stranded DNA (mtDNA) molecule.粒線體內有一環狀的雙股螺旋的DNA。共16569 bases,無intron且內含37個基因。隨細胞分裂而分裂。只有13 genes被轉譯。絕大部分(95%以上)的粒線體蛋白是由染色體中的基因所轉譯再送至粒線體中。
Mitochondrial genes and mutations
Heteroplasmy in mitochondrial genomes
染色體基因的突變導致人的疾病 染色體基因的突變known as the mitochondrial encephalomyopathies主要發生在腦與肌肉(兩者需供應大量的ATP) 這些疾病主要是遺傳自母親,因成長的胚胎的染色體是來自母親的卵。