基本电路理论 第七章 正弦稳态分析 上海交通大学本科学位课程 电子信息与电气工程学院2004年7月.

Slides:



Advertisements
Similar presentations
项目2 单相正弦交流电路应用及测量 贵州电力职业技术学院 ☆ RL串联电路电压测量 ☆ 正弦交流电路功率的测量 ☆ RC串联电路电压测量 ☆
Advertisements

信号与系统 第三章 傅里叶变换 东北大学 2017/2/27.
1.8 支路电流法 什么是支路电流法 支路电流法的推导 应用支路电流法的步骤 支路电流法的应用举例.
第四节 节点分析法 一、节点方程及其一般形式 节点分析法:以节点电压为待求量列写方程。 R6 节点数 n = 4 R4 R5 R3 R1
维修电工理论培训 模块二 电工基础知识; 电子技术知识; PLC知识。.
电路总复习 第1章 电路模型和电路定律 第8章 相量法 第2章 电阻的等效变换 第9章 正弦稳态电路的分析 第3章 电阻电路的一般分析
7 正弦稳态分析 7-1 正弦量 7-2 正弦量的相量表示法 7-3 正弦稳态电路的相量模型 7-4 阻抗和导纳
电路基础 (Fundamentals of Electric Circuits, INF )
第7章 正弦交流电路 7.1 正弦交流电基本概念 Go! 7.2 正弦量的相量表示法 Go! 7.3 纯电阻的交流电路 Go!
第9章 正弦稳态电路的分析 本章重点 阻抗和导纳 9.1 正弦稳态电路的分析 9.3 正弦稳态电路的功率 9.4 复功率 9.5
第 6 章 正弦电流电路 1 正弦电流 7 正弦电流电路的相量分析法 8 含互感元件的正弦电流电路 9 正弦电流电路的功率 10 复功率
第9章 正弦稳态电路的分析 阻抗和导纳 9.1 电路的相量图 9.2 正弦稳态电路的分析 9.3 正弦稳态电路的功率 9.4 复功率 9.5
1.15 双口网络 具有两个端口,分无源双口网络和含源双口网络 输入端口 输出端口 同一端的流入电流和流出电流相同
第5章 相量法基础.
第3章 正弦交流稳态电路 本章主要内容 本章主要介绍电路基本元器件的相量模型、基本定律的相量形式、阻抗、导纳、正弦稳态电路的相量分析法及正弦稳态电路中的功率、功率因数及功率因数的提高。 【引例】 RC低通滤波器 仿真波形 仿真电路 如何工作的?
现代电子技术实验 4.11 RC带通滤波器的设计与测试.
§2 线性网络的几个定理 §2.1 叠加定理 (Superposition Theorem) 1、内容
第6章 正弦交流电路的分析.
3-5 功率因数的提高 S P  电源向负载提供的有功功率P与负载的功率因数有关,由于电源的容量S有限,故功率因数越低,P越小,Q越大,发电机的容量没有被充分利用。 电源端电压U和输出的有功功率P一定时,电源输出电流与功率因数成反比,故功率因数越低,输电线上的发热损失越大,同时输电线上还会产生电压损失。
第4章 正弦交流电路 4.1 正弦电压与电流 4.2 正弦量的相量表示法 4.3 电阻元件、电感元件与电容元件 4.4 电阻元件的交流电路
三相负载的功率 §7-3 学习目标 1.掌握三相对称负载功率的计算方法。 2.掌握三相不对称负载功率的计算方法。
动态电路的相量分析法和 s域分析法 第九章 正弦稳态功率和能量.
第二章(2) 电路定理 主要内容: 1. 迭加定理和线性定理 2. 替代定理 3. 戴维南定理和诺顿定理 4. 最大功率传输定理
第2章 电路的等效变换 第一节 电阻的串联和并联 第二节 电阻的星形连接与三角形连接的等效变换 第三节 两种实际电源模型的等效变换
实验六 积分器、微分器.
第6章 频率特性与谐振电路 6.1 网络函数与频率特性 6.2 多频率激励电路 6.3 RLC串联谐振电路 6.4 GLC并联谐振电路
第二章(2) 电路定理 主要内容: 1. 迭加定理和线性定理 2. 替代定理 3. 戴维南定理和诺顿定理 4. 最大功率传输定理
第二章(2) 电路定理 主要内容: 1. 迭加定理和线性定理 2. 替代定理 3. 戴维南定理和诺顿定理 4. 最大功率传输定理
(1) 求正弦电压和电流的振幅、角频率、频率和初相。 (2) 画出正弦电压和电流的波形图。
中等职业学校教学用书(电子技术专业) 《电工与电子技术基础》 任课教师:李凤琴 李鹏.
第一章 电路基本分析方法 本章内容: 1. 电路和电路模型 2. 电压电流及其参考方向 3. 电路元件 4. 基尔霍夫定律
第五章 1 欧姆定律.
第一章 电路基本分析方法 本章内容: 1. 电路和电路模型 2. 电压电流及其参考方向 3. 电路元件 4. 基尔霍夫定律
第一章 电路基本分析方法 本章内容: 1. 电路和电路模型 2. 电压电流及其参考方向 3. 电路元件 4. 基尔霍夫定律
10.2 串联反馈式稳压电路 稳压电源质量指标 串联反馈式稳压电路工作原理 三端集成稳压器
物理 九年级(下册) 新课标(RJ).
ACAP程序可计算正弦稳态平均功率 11-1 图示电路中,已知 。试求 (1) 电压源发出的瞬时功率。(2) 电感吸收的瞬时功率。
第十七章 第4节 欧姆定律在串、并联电路中的应用 wl com.
晶体管及其小信号放大 -单管共射电路的频率特性.
第三章:恒定电流 第4节 串联电路与并联电路.
电路原理教程 (远程教学课件) 浙江大学电气工程学院.
晶体管及其小信号放大 -单管共射电路的频率特性.
电 路 任课教师:李海娜 TEL: 教材:《电路(第5版) 》邱关源.
2019/5/1 电工技术.
1.熟练掌握纯电感电路中电流与电压的相位关系和数量关系。
PowerPoint 电子科技大学 R、C、L的相位关系的测量.
1.掌握电阻、电感、电容串联电路中电压与电流的相位和数量关系。
第五章 正弦稳态电路 第一节 正弦量的基本概念 第二节 正弦量的相量表示法 第三节 电阻元件伏安关系的向量形式
回顾: 支路法 若电路有 b 条支路,n 个节点 求各支路的电压、电流。共2b个未知数 可列方程数 KCL: n-1
6-1 求题图6-1所示双口网络的电阻参数和电导参数。
15.2 认识电功率.
第十三章 电功和电功率 二、电功率 1.
电路原理教程 (远程教学课件) 浙江大学电气工程学院.
电路原理教程 (远程教学课件) 浙江大学电气工程学院.
[引例] 正弦交流电的日常应用 (b)等效电路图 L + _ R r (a)接线原理图 开关 电容器 镇流器 启辉器 日光灯管.
第4章 三相电路 本章主要内容 本章主要介绍对称三相电压;三相电路的连接方式;在不同连接方式下线电压、相电压、线电流、相电流的关系;对称与不对称三相电路电压、电流和功率的计算。 照明灯如何接入电路? 【引例】 什么是三相四线制? 三相四线制电路供电示意图.
第4章 正弦交流电路 4.1 正弦量的基本概念 4.2 正弦量的有效值 4.3 正弦量的相量表示法 4.4 正弦电路中的电阻元件
实验二 基尔霍夫定律 510实验室 韩春玲.
复习: 欧姆定律: 1. 内容: 导体中的电流与导体两端的电压成正比,与导体的电阻成反比。 2. 表达式: 3. 变形公式:
第四节 向量的乘积 一、两向量的数量积 二、两向量的向量积.
第十二章 拉普拉斯变换在电路分析中的应用 ( S域分析法)
13.5 怎样认识和测量电压.
第三节 数量积 向量积 混合积 一、向量的数量积 二、向量的向量积 三、向量的混合积 四、小结 思考题.
第9章 频率特性和谐振现象 9.1 网络函数和频率特性 问题引出: 本章任务:研究电路特性与频率的关系 一、网络函数 齐性定理:
本PPT内容节选自赵凯华的《电磁学》下册
第六章 三相电路 6-1 三相电路基本概念 一、三相电源 uA uB uC uC uB uA 时域特征: o t.
2.5.3 功率三角形与功率因数 1.瞬时功率.
电阻的串联 2014机电班.
9.6.2 互补对称放大电路 1. 无输出变压器(OTL)的互补对称放大电路 +UCC
第4章 正弦交流电路 4.1交流电路中的基本物理量 4.2正弦量的相量表示 4.3电路基本定律的相量形式 4.4 电阻、电感、电容电路
Presentation transcript:

基本电路理论 第七章 正弦稳态分析 上海交通大学本科学位课程 电子信息与电气工程学院2004年7月

§7.7 正弦稳态电路的相量分析法 正弦稳态电路的相量图解法 §7.7 正弦稳态电路的相量分析法 正弦稳态电路的相量图解法 在正弦稳态电路分析中,有时候利用相量图求解比较方便。相量图作为一种几何方法,具有形象直观的特点,若与解析方法配合使用,两者能够相辅相承,更利于求解。 利用相量图分析正弦电路时,正确选择参考相量(即初相位为零值的相量)是关键。一般情况下,串联电路常以电流为参考相量,对并联电路,常以各支路的公共电压为参考相量。

§7.7 正弦稳态电路的相量分析法 右图中安培计和伏特计的读数已标出(都是正弦量的有效值),求安培计A0和伏特计V0的读数。 例 §7.7 正弦稳态电路的相量分析法 例 右图中安培计和伏特计的读数已标出(都是正弦量的有效值),求安培计A0和伏特计V0的读数。 ①电阻的电压相量 与电流相量 同相,电阻又与电感串联,故取 为参考相量 ②电感电压 超前电流 90º, 且有效值VL=VR,得 于是有

§7.7 正弦稳态电路的相量分析法 ③ ④电容XC的电流相量 超前 90º ⑤ IXC =10, I0=10

§7.7 正弦稳态电路的相量分析法 ⑥ 电容电压相量 落后电流相量 90º,且VC=100 ⑦总电压相量 得

§7.8 正弦稳态电路的功率 基本要求: 瞬时功率、电源与电路间的能量往返交换 有功功率、无功功率、表观功率,复功率 功率三角形的概念 §7.8 正弦稳态电路的功率 基本要求: 瞬时功率、电源与电路间的能量往返交换 有功功率、无功功率、表观功率,复功率 功率三角形的概念 功率因数的概念、功率因数的提高 最大功率传输

§7.8 正弦稳态电路的功率 就电路而言,本质上是研究信号的传输及信号在传输过程中能量的转换情况。这同样适合于正弦信号。因此,功率的问题无疑是一个很重要的问题,特别是在交流电路中,存在着电容、电感元件与电源之间能量的往返交换,这是在纯电阻电路中没有的现象,因此,交流电路的功率分析较为复杂。

§7.8 正弦稳态电路的功率 瞬时功率 设 则电压v(t) 是同频率的正弦量,只是相位上有所不同 §7.8 正弦稳态电路的功率 瞬时功率 设 则电压v(t) 是同频率的正弦量,只是相位上有所不同 电路在任一瞬间所吸取的功率(即瞬时功率)等于输入端的瞬时电流与瞬时电压的乘积。 p(t) = v(t)i(t) = 2VIcos(t+)cost =VIcos+VIcos(2t+) 式中为电路输入端电压超前电流的相位,即电路的等效阻抗的阻抗角(=Z),VI为有效值,注意:-90ºZ90º

§7.8 正弦稳态电路的功率 电路的瞬时功率可看成两个分量的迭加,其一为恒定分量VIcos,另一为简谐分量VIcos(2t+),简谐分量的频率是电压或电流频率的2倍。 由于电压、电流不同相,在每个周期内,当它们为正或负时,功率为正(p>0),电源对电路作正功,能量从电源送往电路,当电压、电流的符号相反,功率为负(p<0),电源对电路作负功,能量由电路释放送回电源,这就是电源与电路间的能量往返交换。

§7.8 正弦稳态电路的功率 对电阻而言,任何时候的瞬时功率都是正的,电阻总是耗能的。 §7.8 正弦稳态电路的功率 电源与电路间的能量往返交换,这种现象在纯电阻电路电路中是不可能存在的,是由不耗能的储能元件电容、电感造成的。 若无源网络是纯电阻网络,网络的阻抗角=0,即电压、电流同相位,pR(t)=VI(1+cos2t)0 对电阻而言,任何时候的瞬时功率都是正的,电阻总是耗能的。 若无源网络可用一个纯电容替换,网络阻抗角=-90º即电流超前电压90º, pC(t)=VIcos(2t-90º) 在一周期内,半周期p>0,电源将能量输入电容,有半周期p<0,电容将能量吐还给电源,总能量为0

§7.8 正弦稳态电路的功率 若无源网络是个电感,网络的阻抗角 = 90º,电压超前电流90º pL(t) = VIcos(2t+90º) 能量的情况与电容一样。 由三角公式 瞬时功率计算公式可分解成 pR(t)= VIcos(1+ cos2t)0,说明在能量传输上不改变方向,只有大小变化,这分量的大小表示电路能量消耗的快慢程度,即电路等效阻抗电阻部分吸收的瞬时功率,称之为有功分量。

§7.8 正弦稳态电路的功率 pX(t) = -VIsinsin2t,是瞬时功率的交变分量。曲线与横坐标所用面积为电源与电路储能元件间吸收和释放的能量,这分量代表电源与电路间能量往返交换的速率,在平均意义上说是不作功的无功分量,为电路等效阻抗电抗部分的瞬时功率。

§7.8 正弦稳态电路的功率 平均功率(有功功率) §7.8 正弦稳态电路的功率 平均功率(有功功率) 电路中一般总是有电阻,尽管电路的瞬时功率有正有负,但在一个周期内,电路总是消耗功率的,因此,电路吸收的平均功率一般恒大于零。 其实平均功率就是电路瞬时功率的有功分量的平均值(又等于瞬时功率有功分量交变部分的极大值),因此,平均功率又称有功功率,简称功率,单位:瓦(W) 、千瓦(KW)。

§7.8 正弦稳态电路的功率 Pav=VIcos表明正弦交流电路的有功功率,并不等于电压有效值与电流有效值的乘积,还要乘上cos,打一个折扣。cos称功率因数,其中 称功率因数角。其实 就是阻抗角,它完全是由电路参数和拓扑结构所决定,是由电感、电容引起的。 电感、电容在电路中并不消耗能量,但会在电路中与电源出现能量往返交换现象,使电路的功率因数低于纯电阻电路的功率因数cos=1,由 在相同电压作用下,为使负载获得相同功率,功率因数越低,所需电流越大,加重了电源电流的负担。 如能改变阻抗角(→0)就能减小电流。一般用电器是感性的,因此常用并联电容来减小阻抗角。

§7.8 正弦稳态电路的功率 无功功率 电路与电源往返交换能量的多少,与电路瞬时功率无功分量的极大值VIsin有关,此值越大,则瞬时功率无功分量波形的正负半周与横轴间构成的面积越大,往返交换的能量也越多,因此,定义Q 为无功功率 无功功率表示电路与电源间往返交换能量的最大速率,式中sin称无功因数。 无功功率的单位为无功伏安,简称乏(VAR)、也可用千乏(KVAR)

§7.8 正弦稳态电路的功率 表观功率 在功率三角形中,功率因数角也是阻抗角,因此,阻抗三角形、电压三角形与功率三角形相似。 §7.8 正弦稳态电路的功率 表观功率 用电设备或用电器件,都有在一定条件下的安全运行限额,即额定电压V,额定电流I,(VI都是有效值),于是S = VI称S为表观功率(视在功率),表观功率的单位为伏安(VA)、千伏安(KVA) 由于S = VI,P = VIcos,Q = VIsin, 可用功率三角形表示 在功率三角形中,功率因数角也是阻抗角,因此,阻抗三角形、电压三角形与功率三角形相似。

§7.8 正弦稳态电路的功率 复功率 表观功率、有功功率、无功功率和功率因数角,可以用复功率来统一表示。 设任意单口电路的电流、 电压为 令 §7.8 正弦稳态电路的功率 复功率 表观功率、有功功率、无功功率和功率因数角,可以用复功率来统一表示。 设任意单口电路的电流、 电压为 令 为 的共轭复根, ,则复功率 P为有功功率,Q为无功功率, 模为表观功率, 为阻抗角,即功率因数角。