新课导入 这种相似有什么特征? 相似图形.

Slides:



Advertisements
Similar presentations
12.1 轴对称( 1 ) 一.课堂引入 中国古代的建筑举世闻名,我们看看以下建 筑有什么共同特征 ?
Advertisements

12.1 轴对称( 1 ) 给我最大快乐的, 不是已懂的知识, 而是不断的学习 高斯.
首页 全国高等学校招生考试统一考试 监考员培训 广州市招生考试委员会办公室.
人口增长.
广州宜家选址分析 0连锁 李若谷 陈玉风 黄小飞 蓝柔盈.
诚信为本、操守为重、坚持准则、不做假账 第 九 章 会 计 报 表.
无效宣告请求书与 意见陈述书代理实务 国家知识产权局专利复审委员会
颜 港 小 学 2009年数学教师暑期业务培训
第二章 流体运动的基本方程和基本规律 § 2.1 连续方程 § 2.2 动量方程 § 2.3 能量方程 § 2.4 方程的基本解法
招考新政与高中学校面临的挑战 芜湖市教育科学研究所 俞宏胜
浙江省深化高校考试招生制度综合改革试点方案(2017新方案)
培训与开发 国家人力资源管理师二级职业资格认证—培训教程 吴昌品.
财产行为税 是以纳税人拥有的财产数量或财产价值为征税对象或为了实现某种特定的目的,以纳税人的某些特定行为为征税对象而开征的税种。包括房产税、城镇土地使用税、车船税、土地增值税、资源税、印花税、城市维护建设税、 契税、耕地占用税等九个税种。由于其税收收入基本上为地方政府财政收入,所以又称为地方税。 除财产行为税以外,还有流转税、所得税两大类税收。
第一章 会计法律制度 补充要点.
二、个性教育.
2011年10月31日是一个令人警醒的日子,世界在10月31日迎来第70亿人口。当日凌晨,成为象征性的全球第70亿名成员之一的婴儿在菲律宾降生。 ?
第九课时 二元一次方程组 .
七(7)中队读书节 韩茜、蒋霁制作.
财经法规与会计职业道德 (7) 四川财经职业学院.
新准则框架与首次执行 企业会计准则 主讲人:陈清宇.
初级会计实务 第八章 产品成本核算 主讲人:杨菠.
摇摆的中东地区 永嘉县实验中学 张 杰.
摇摆的中东地区 永嘉县实验中学 张 杰.
问题解决与创造思维 刘 国 权 吉林省高等学校师资培训中心.
大道至简:自主学习拿高分 丽水市教育教学研究院 朱德飞.
中考阅读 复习备考交流 西安铁一中分校 向连吾.
第四单元 自觉依法律己 避免违法犯罪.
高考新改革与过渡 怀化市铁路第一中学 向重新.
第十一章:思路与谋篇 教学内容: 1、思路及有关概念; 2、谋篇(结构)的原则; 3、谋篇的方法(层次段落安排, 过度与照应,开头与结尾).
财经法规与会计职业道德 (3) 四川财经职业学院.
中央广播电视大学开放教育 成本会计(补修)期末复习
人教版义务教育课程标准实验教科书 小学数学四年级上册第七单元《数学广角》 合理安排时间 248.
<<广东省中小学生体能素质评价标准>>
市级个人课题交流材料 《旋转》问题情境引入的效果对比 高淳县第一中学 孔小军.
第九章 归纳推理 教学目的与要求: 通过本章学习,了解归纳推理与演绎推理的联系与区别,各种归纳推理的特点与作用,掌握提高归纳推理结论可靠性的方法,能熟练运用探求现象间因果联系的逻辑方法,提高运用归纳推理的能力。
专题二 识图题增分技巧.
线索一 线索二 复习线索 专题五 线索三 模块二 第二部分 考点一 高考考点 考点二 考点三 配套课时检测.
第四课时 常见天气系统 阜宁一中 姚亚林.
中考语文积累 永宁县教研室 步正军 2015.9.
课标教材下教研工作的 实践与思考 山东临沂市教育科学研究中心 郭允远.
小学数学知识讲座 应用题.
祝: 同学们学习愉快! 特殊平行四边形(3).
倒装句之其他句式.
 人体的营养.
江苏省2009年普通高校 招生录取办法 江苏省教育考试院
旅游服务与管理专业 知识点7 道教教主老子圣迹 任务三 道 教 主题二 中国四大宗教 辉县市职业中等专业学校 辉县市职业中等专业学校
三角形的邊角關係 大綱:三角形邊的不等關係 三角形邊角關係 樞紐定理 背景知識:不等式 顧震宇 台灣數位學習科技股份有限公司.
第 22 课 孙中山的民主追求 1 .近代变法救国主张的失败教训: “师夷之长技以制 夷”“中体西用”、兴办洋务、变法维新等的失败,使孙中山
热身练习 1、如图,已知AD⊥BC,BD=CD,则△ABC是什么三角形?请说明理由
相似三角形 青铜峡市第六中学: 李 成.
如图:直线AB、CD相交于O,图中有哪些角具有特殊位置关系?这些角数量上有什么关系?
课 堂 练 习.
簡介與使用說明 『數學的學習注重循序累進的邏輯結構』
第二十七章 相 似 27.3 位 似 第1课时 位似图形的概念及画法.
浙教版初中数学九年级(上) “4.6图形的位似” 教学设计 初中数学资源网.
知识点二 国际环境法的实施.
第五章 相交线与平行线 三线八角.
相似三角形的對應關係與作圖 利用相似三角形作簡易測量
3.8图形的位似.
课前注意 课前注意 大家好!欢迎加入0118班! 请注意以下几点: 1.服务:卡顿、听不清声音、看不见ppt—管家( ) 2.课堂秩序:公共课堂,勿谈与课堂无关或消极的话题。 3.答疑:上课听讲,课后答疑,微信留言。 4.联系方式:提示老师手机/微信: QQ:
(1)比例基本性质.
相似三角形的周长与面积.
基础会计.
不動產估價.
▲重合的概念 ▲對應頂點、對應邊、對應角 ▲全等的記法 ▲全等性質 ▲三角形全等性質
27.2.3相似三角形的周长与面积.
尺規作圖 大綱: 線段 角度 垂直平分線與角平分線 張婷萱 台灣數位學習科技股份有限公司.
畢氏定理(百牛大祭)的故事 張美玲 製作 資料來源:探索數學的故事(凡異出版社).
成本會計 在決策中的功能 第四課 1.
102年人事預算編列說明 邁向頂尖大學辦公室製作.
Presentation transcript:

新课导入 这种相似有什么特征? 相似图形

相似图形 这种相似有什么特征?

照相机把人物的影像缩小到底片上 这种相似有什么特征? 相似图形

在幻灯机放映图片的过程中,这些图片有 什么关系? 2. 幻灯机在哪儿呢? 3.我们能给这种有特殊位置的相似图形一个名称吗?

教学目标 知识与能力 了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质。 掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小。 掌握直角坐标系中图形的位似变化与对应点坐标变化的规律。

过程与方法 经历位似图形性质的探索过程,进一步发展学生的探究、交流能力、以及动手、动脑、手脑和谐一致的习惯。

情感态度与价值观 利用图形的位似解决一些简单的实际问题,并在此过程中培养学生的数学应用意识,进一步培养学生动手操作的良好习惯。 发展学生的合情推理能力和初步的逻辑推理能力。

教学重难点 位似图形的有关概念、性质与作图。 利用位似将一个图形放大或缩小。 直角坐标系中图形的位似变化与对应点坐标的关系。

这些图形相似吗? 这样放大或缩小,没有改变图形形状,经过放大或缩小的图形,与原图是相似的。

观 察 它们相似的共同点是什么?

其中相似图形的共同点是什么?

知识要点 不仅相似,而且对应顶点的连线相交于一点,对应边互相平行,像这样的两个图形叫做位似图形(homothetic figures),这个点叫做位似中心,这时的相似比又称为位似比。

位似图形

注意 位似是一种具有位置关系的相似。 位似图形是相似图形的特殊情形。 位似图形必定是相似图形,而相似图形不一定是位似图形。 两个位似图形的位似中心只有一个。 两个位似图形可能位于位似中心的两侧,也可能位于位似中心的一侧。

位似图形的性质 对应点与位似中心共线。 不经过位似中心的对应边平行。 位似图形上任意一对应点到位似中心的距离之比等于位似比。

位似的作用 位似可以将一个图形放大或缩小。

小练习 请以坐标原点O为位似中心,作□ ABCD的位似图形,并把它的边长放大3倍。

作法: 1. 连结OA,OB,OC,OD. 2. 分别延长OA,OB,OC,OD至G,C,E,F,使 3. 依次连结GC,CE,EF,FG.

小练习 使新图形与原图形对应线段的比是2∶1. 在原图上取几个关键点A,B,C,D,E,F,G;图外任取一点P; 作射线AP,BP,CP,DP,EP,FP,GP; 在这些射线上依次取点A′,B′,C′,D′,E′,F′,G′,使PA′=2PA,PB′=2PB,PC′=2PC,PD′=2PD,PC′=2PC,PE′ =2PE,PF′=2PF,PG′=2PG; B′ A′ C′ D′ E′ F′ G′ A B G C E D F ●P 顺次连接点A′, B′, C′, D′, E′, F′,G′,所得到的图形(向下的箭头)就是符合要求的图形。

如果依次在射线上PA,PB,PC,PD,PE,PF,PG上取点A′,B′,C′,D′,E′,F′,G′呢? 你还有其它方法吗? 如果依次在射线上PA,PB,PC,PD,PE,PF,PG上取点A′,B′,C′,D′,E′,F′,G′呢? A′ B′ C′ D′ E′ F′ G′ A B G C E D F ●P 结果是一个向上的箭头. 新图形与原图形是位似图形,位似比是2∶1

位似变换的步骤 ①确定位似中心,位似中心的位置可随意选择; ②确定原图形的关键点,如四边形有四个关键点,即它的四个顶点; ③确定位似比,根据位似比的取值,可以判断是将一个图形放大还是缩小; ④符合要求的图形不唯一,因为所作的图形与所确定的位似中心的位置有关,并且同一个位似中心的两侧各有一个符合要求的图形。

小练习

位似多边形 如果两个图形不仅相似,而且每组对应顶点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。 C1 D1 A E B1 B D C E1 A1

探究 在平面直角坐标系中,有两点A(6,3),B(6,0)。以原点O为位似中心,相似比为 ,把线段AB缩小。观察对应点之间坐标的变化,你有什么发现?

探究 △ABC三个顶点坐标分别为A(2,3),B(2,1),C(6,2),以点O为位似中心,相似比为2,将△ABC放大,观察对应顶点坐标的变化,你有什么发现?

知识要点 在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,则像上的对应点的坐标为(kx,ky)或(-kx,-ky)。

图形变换 对称 平移 旋转 相似

轴对称 中心对称

平移 旋转

相似

课堂小结 1. 位似图形、位似中心、位似比: 如果两个图形不仅形状相同,而且每组对应顶点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形。 这个点叫做位似中心。 这时的相似比又称为位似比.

2. 位似图形的性质: 位似图形上的任意一对对应点到位似中心的距离之比等于位似比。 以坐标原点为位似中心的位似变换有以下性质:若原图形上点的坐标为(x,y),与原图形的位似比为k,则像上的对应点的坐标为(kx,ky)或(―kx,―ky)。

3. 位似图形的画法: 画出基本图形。 选取位似中心。 根据条件确定对应点,并描出对应点。 顺次连结各对应点,所成的图形就是所求的图形。

随堂练习 √ × 1. 判断下列各对图形哪些是位似图形,哪些不是. (1)五边形ABCDE与五边形A′B′C′D′E′ (2)正方形ABCD与正方A′B′C′D′

(3)等边三角形ABC与等边三角形A′B′C′ √

2. 下面的说法对吗?为什么? (1)分别在△ABC的边AB,AC上取点D,E,使DE∥BC,那么△ADE是△ABC缩小后的图形。 (2)分别在△ABC的边AB,AC的延长线上取点D,E,使DE∥BC,那么△ADE是△ABC放大后的图形。 (3)分别在△ABC的边AB,AC的反向延长线上取点D,E,使DE∥BC,那么△ADE是△ABC缩小后的图形。 √ √ × A B C D E

3.如图P,E,F分别是AC,AB,AD的中点,四边形AEPF与四边形ABCD是位似图形吗?如果是位似图形,说出位似中心和位似比. 是位似图形。 位似中心是点A, 位似比是1:2。

4. 哪些图形是位似图形并指出位似图形的位似中心。 O P (1) (3) (2) √ √ × 位似中心是点P。 位似中心是点O。

5. 作出一个新图形,使新图形与原图形对应线段的比是2∶1。

6. (1)如果在射线OA,OB,OC上分别取D,E,F,使OD=2OA, OE=2OB, OF=2OC,那么,结果会怎样? 结果会得到一个放大了的△DEF,且△DEF的三边是△ABC三边的2倍.即它们的位似比是2∶1。

(2)如果在射线AO,BO,CO上分别取点D,E,F使DO=OA,EO=OB,FO=OC,那么,结果又会怎样? 结果会得到一个与△ABC全等的△DEF,.即它们的位似比是1∶1。

7. 任意画一个三角形,将△ABC的三边缩小为原来的一半。 E ● F ● O D ●

  8. 如图,已知△ABC和点O.以O为位似中心,求作△ABC的位似图形,并把△ABC的边长缩小到原来的一半。

9. 如图,选取适当的一点为位似中心,适当的比为位似比,作该图的位似图形,使它和原图形组成一幅轴对称的图形。

习题答案 相似比分别为 ,位似中心略. 略. 坐标分别为D(1,1)E(2,1)F(3,2)或 相似比分别为 ,位似中心略. 略. 坐标分别为D(1,1)E(2,1)F(3,2)或 D(-1,-1)E(-2,-1)F(-3,-2)