常用概率分布 ---Poisson分布.

Slides:



Advertisements
Similar presentations
四川财经职业学院会计一系会计综合实训 目录 情境 1.1 企业认知 情境 1.3 日常经济业务核算 情境 1.4 产品成本核算 情境 1.5 编制报表前准备工作 情境 1.6 期末会计报表的编制 情境 1.2 建账.
Advertisements

2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
主编:邓萌 【点按任意键进入】 【第六单元】 教育口语. 幼儿教师教育口 语概论 模块一 幼儿教师教育口语 分类训练 模块二 适应不同对象的教 育口语 模块三 《幼儿教师口语》编写组.
第一組 加減法 思澄、博軒、暐翔、寒菱. 大綱 1. 加減法本質 2. 迷思概念 3. 一 ~ 七冊分析 4. 教材特色.
海南医学院附 院妇产科教室 华少平 妊娠合并心脏病  概述  妊娠、分娩对心脏病的影响  心脏病对妊娠、分娩的影响  妊娠合病心脏病的种类  妊娠合并心脏病对胎儿的影响  诊断  防治.
植树节的由来 植树节的意义 各国的植树节 纪念中山先生 植树节的由来 历史发展到今天, “ 植树造林,绿化祖国 ” 的热潮漫卷 了中华大地。从沿海到内地,从城市到乡村,涌现了多少 造林模范,留下了多少感人的故事。婴儿出世,父母栽一 棵小白怕,盼望孩子和小树一样浴光吮露,茁壮成长;男 女成婚,新人双双植一株嫩柳,象征家庭美满,幸福久长;
客户协议书 填写样本和说明 河南省郑州市金水路 299 号浦发国际金融中 心 13 层 吉林钰鸿国创贵金属经营有 限公司.
浙江省县级公立医院改革与剖析 马 进 上海交通大学公共卫生学院
第二章 环境.
教师招聘考试 政策解读 讲师:卢建鹏
了解语文课程的基本理念,把握语文素养的构成要素。 把握语文教育的特点,特别是开放而有活力的语文课程的特点。
北台小学 构建和谐师生关系 做幸福教师 2012—2013上职工大会.
福榮街官立小學 我家孩子上小一.
第2期技職教育再造方案(草案) 教育部 101年12月12日 1 1.
企业员工心态管理培训 企业员工心态管理培训讲师:谭小琥.
历史人物的研究 ----曾国藩 组员: 乔立蓉 杜曜芳 杨慧 组长:马学思 杜志丹 史敦慧 王晶.
教育部高职高专英语类专业教学指导委员会 刘黛琳 山东 • 二○一一年八月
淡雅诗韵 七(12)班 第二组 蔡聿桐.
第七届全国英语专业院长/系主任高级论坛 汇报材料
小數怕長計, 高糖飲品要節制 瑪麗醫院營養師 張桂嫦.
制冷和空调设备运用与维修专业 全日制2+1中等职业技术专业.
会计信息分析与运用 —浙江古越龙山酒股份有限公司财务分析 组员:2006级工商企业管理专业 金国芳 叶乐慧 魏观红 徐挺挺 虞琴琴.
第六章 人体生命活动的调节 人体对外界环境的感知.
芹菜 英语051班 9号 黄秋迎 概论:芹菜是常用蔬菜之一,既可热炒,又能凉拌,深受人们喜爱。近年来诸多研究表明,这是一种具有很好药用价值的植物。 别名:旱芹、样芹菜、药芹、香芹、蒲芹 。 芹菜属于花,芽及茎类。
2012年 学生党支部书记工作交流 大连理工大学 建工学部 孟秀英
北京市职业技能鉴定管理中心试题管理科.
2014吉林市卫生局事业单位招聘153名工作人员公告解读
各類所得扣繳法令 與申報實務 財政部北區國稅局桃園分局 103年9月25日
初級游泳教學.
爱国卫生工作的持续发展 区爱卫办 俞贞龙.
第八章 数学活动 方程组图象解法和实际应用
本课内容提要 一、汇率的含义 二、汇率变化与币值的关系 三、汇率变化的影响. 本课内容提要 一、汇率的含义 二、汇率变化与币值的关系 三、汇率变化的影响.
散文鉴赏方法谈.
比亚迪集成创新模式探究 深圳大学2010届本科毕业论文答辩 姓名:卓华毅 专业:工商管理 学号: 指导老师:刘莉
如何撰写青年基金申请书 报 告 人: 吴 金 随.
点击输 入标题 点击输入说明性文字.
國際志工海外僑校服務 越南 國立臺中教育大學 2010年國際志工團隊.
痰 饮.
學分抵免原則及 學分抵免線上操作說明會.
教 学 查 房 黄宗海 南方医科大学第二临床医学院 外科学教研室.
评 建 工 作 安 排.
“十二五”国家科技计划经费管理改革培训 概预算申报与审批 国家科学技术部 2012年5月.
“十二五”国家科技计划经费管理改革培训 概预算申报与审批 国家科学技术部 2012年5月.
首都体育学院 武术与表演学院 张长念 太极拳技击运用之擒拿 首都体育学院 武术与表演学院 张长念
现行英语中考考试内容与形式的利与弊 黑龙江省教育学院 于 钢 2016, 07,黄山.
第5讲:比较安全学的创建 吴 超 教授 (O)
彰化縣西勢國小備課工作坊 新生入學的班級經營 主講:黃盈禎
重庆市西永组团K标准分区基本情况介绍.
西貢區歷史文化 清水灣 鍾礎營,楊柳鈞,林顥霖, 譚咏欣,陳昭龍.
所得稅扣繳法令與實務 財政部北區國稅局桃園分局 102年12月19日 1 1.
角 色 造 型 第四章 欧式卡通造型 主讲:李娜.
走进校园流行 高二15班政治组 指导老师:曾森治老师.
医院文化建设 广东省中医院 2011年3月26日.番禺.
6.6 单侧置信限 1、问题的引入 2、基本概念 3、典型例题 4、小结.
2-7、函数的微分 教学要求 教学要点.
第三章 多维随机变量及其分布 §2 边缘分布 边缘分布函数 边缘分布律 边缘概率密度.
第十章 方差分析.
Poisson分布的统计分析.
第七章 参数估计 7.3 参数的区间估计.
习题 一、概率论 1.已知随机事件A,B,C满足 在下列三种情况下,计算 (1)A,B,C相互独立 (2)A,B独立,A,C互不相容
抽样和抽样分布 基本计算 Sampling & Sampling distribution
概 率 统 计 主讲教师 叶宏 山东大学数学院.
5.2 常用统计分布 一、常见分布 二、概率分布的分位数 三、小结.
第四节 随机变量函数的概率分布 X 是分布已知的随机变量,g ( · ) 是一个已知 的连续函数,如何求随机变量 Y =g(X ) 的分布?
第一部分:概率 产生随机样本:对分布采样 均匀分布 其他分布 伪随机数 很多统计软件包中都有此工具 如在Matlab中:rand
§5.2 抽样分布   确定统计量的分布——抽样分布,是数理统计的基本问题之一.采用求随机向量的函数的分布的方法可得到抽样分布.由于样本容量一般不止2或 3(甚至还可能是随机的),故计算往往很复杂,有时还需要特殊技巧或特殊工具.   由于正态总体是最常见的总体,故本节介绍的几个抽样分布均对正态总体而言.
第二节 函数的极限 一、函数极限的定义 二、函数极限的性质 三、小结 思考题.
难点:连续变量函数分布与二维连续变量分布
单样本检验.
第三章 从概率分布函数的抽样 (Sampling from Probability Distribution Functions)
Presentation transcript:

常用概率分布 ---Poisson分布

Poisson分布的概念 在特定的时间或空间的范围内,刻画某个事件A发生次数所对应的概率分布。 事件A发生的概率与这个范围大小有关,与这个范围的位置无关,并且与这个范围的周围是否发生事件A无关。 则在这个范围的事件发生数X的概率分布为Poisson分布

Poisson分布的概念 如果随机变量x的分布规律服从 称X服从参数为的Poisson分布,记为 为Poisson分布的总体均数。 在一个时间范围内:电话总机接到的电话个数 在一个容器内的细菌个数 对于正常人的情况下,24小时发生早搏的个数 某类疾病的急性发作次数

Poisson分布的条件 与二项分布相似 平稳性(随机分布性):x的取值与观察单位的位置无关,与观察单位的大小有关 独立增量性:在某个观察单位上x的取值与前面各观察单位上x的取值无关 普通性:观察单位可以小到只有1个事件发生,发生概率不变

Poisson分布的条件 服从Poisson分布的罕见事件: 均匀液体中的细菌分布 放射性物质单位时间内的放射次数 粉尘在观察容积内的分布 非传染性罕见疾病在人群中的分布

Poisson分布的形态

Poisson分布的形态

Poisson分布的特点 形态: 离散分布 只取决于 , 很小时分布很偏,当 增加时,逐渐趋于对称。 在 和 处达到峰值,且有 只取决于 , 很小时分布很偏,当 增加时,逐渐趋于对称。 在 和 处达到峰值,且有 Poisson分布的总体均数与总体方差相等,为

Poisson分布的特点 Poisson分布的观察结果具有可加性:如果 例:放射性物质平均每分钟放射记数为5,测量3 次, 均服从 ,则 即3分钟的放射记数服从

二项分布的Poisson近似 设 ,当 , 常数时,此时的极限分布是以c为参数的Poisson分布。 越小,近似越好 例:某地食管癌的发病率 =8/10000,在当地随即抽查500人,患者至少为6人的概率。

Poisson分布的正态近似 越小分布越偏,随着 ,Poisson分布也渐近正态 , 。一般当 时, Poisson分布进行连续性校正后可按正态分布处理。

Poisson分布的应用 概率估计 例4-7 某地新生儿先心的发病率为8‰,该地20名新生儿中有4人患先心的概率多大? 单侧累积概率 例4-15 放射性物质平均半小时发出360个脉冲,估计该物质平均半小时发出脉冲数大于400个的概率

STATA命令 Poisson分布的总体均数的95%可信区间 命令为 : cii 观察单位数 观察到的发生数, poisson

STATA命令 单样本Poisson分布确切概率法假设检验 命令为:poistest 样本均数 已知总体均数

Thank You !