Antiarrhythmic Drugs Huifang Tang Department of pharmacology

Slides:



Advertisements
Similar presentations
武汉大学人民医院急诊科 李涛 《急诊医学》 发热、心悸、少尿 武汉大学人民医院急诊科 李涛
Advertisements

心肺脑复苏 Cardiopulmonary Cerebral Resuscitation , CPCR.
心律不整用藥之認識 及臨床應用. 定義 正常心跳 – 由右心房的竇房結 (SA node) 來控制,經由房 室結 (AV node) 、希氏徑 (His Bundle) ,把電刺 激由心房傳到心室,引起心臟的收縮,以維持 正常的血壓及身體所需之血液供應。 – 正常成人在休息狀態每分心跳速率為 60.
抗心律失常药 心律失常 — 心动节律和频率异常 心律失常分类: 1 、缓慢型:异丙肾上腺素或阿托品等。 2 、快速型:药物治疗复杂。 治疗手段: 1 、非药物治疗(起搏器、导管消融等) 2 、药物治疗.
6/22/2006First Responder Training1 First responder training MMH 15F Emergency Department Yu-Jang Su, MD 95/6/22 11:15—12:05.
心臟內科 心律不整心導管 燒灼術衛教 心律不整心導管燒灼術 以電極導管經血管放入心臟記錄心內電圖,並刺 激心臟誘發心律不整。然後找出病源部位,接上 高頻幅電流將病灶燒灼。可根治的心律不整,包 括: 心室上頻脈 ( Paroxysmal supraventricular tachycardia )
第 19 章 抗心律失常药. 要点 1 .熟悉抗心律失常药的分类。 2 .掌握抗心律失常药的药理作用,临床应 用和不良反应。
抗慢性心功能不全药 药学院 陈百泉. 慢性心功能不全 ( chronic or congestive heart failure , CHF ) 各种病因引起的多种心脏疾病 的终末阶段。适当静脉回流下,心 排出量绝对 / 相对减少,不能满足机 体、组织所需的一种病理状态,同 时它又是一种超负荷心脏病,
動態心律不整判讀 Dysrhythmias
房性期前收缩 (atrial premature beats)
心律失常的治疗与护理.
第三篇 循环系统疾病 第三章 心律失常 (Arrhythmia) 河南大学第一附属医院 张继文.
抗心律失常药.
心律失常.
第三章 心律失常 甘肃中医学院西医内科教研室.
第十九章 抗心律失常药 Antiarrhythmic drugs
心律失常的临床用药 新疆医科大学第一附属医院 王 红
心律失常的护理 临床教研室 罗惠媛.
复习上一次课内容.
第五节 心律失常 河南中医学院第二临床医学院 诊断学科.
抗心律失常药.
Agents Used in Cardiac Arrhythmias
第十九章 抗心律失常药antiarrthythmic drugs
豬隻體內兒茶素之抗氧化效能與腸道作用研究
第十九章 抗心律失常药 Antiarrhythmic Drugs
神经元的电活动和神经元间信息的传递 生物电研究简史
抗心律失常药.
Pharmacological treatment of Arrhythmias
第三篇 循环系统疾病 第三章 心律失常 (Arrhythmia) 杜玉芝 学时数:4学时.
内 科 学 心律失常 (Cardiac Arrhythmia) 内科教研室.
心律失常 Cardiac arrhythmia
心房颤动 的研究进展.
心电图(Electrocardiogram,ECG)
第十九章 抗心律失常药 何红喜.
1.女性,44岁。八年来劳累后心慌气短。既往曾患过“风湿性关节炎”。近日因劳累病情加重,心慌,气短,咯血,不能平卧急诊入院。查体:半卧位,慢性重病容。脉搏80次/分,血压13.3/9.33kPa(100/70mmHg)。心向左侧扩大,心律不齐,心率120次/分,心尖区舒张期雷鸣样杂音,主动脉瓣区收缩期和舒张期杂音。肝肋下3cm,下肢轻度浮肿。诊断:风湿性心脏病,二尖瓣狭窄,主动脉瓣狭窄及关闭不全,心房纤颤,心功能不全II度。该病人在用强心药治疗的过程中,心率突然减为50次/分,此时应选用.
常见心律失常的处理 山东省千佛山医院急救中心 蔡卫东.
心脏检查 physical examination of the heart
(Kalemia disturbance)
电解质紊乱和药物 对心电图的影响 天津南开医院心脏科 高陆.
第三篇 心脏内科学 Cardiology.
抗心律失常药 antiarrhythmics
藥理學 藥物作用基本原理 主講者:康雅斐.
抗癫痫药 Antiepileptics.
Jing Xu M. D. Dept. of Cardiology The Affiliated Hospital of M.M.U
藥理學 心衰竭藥物 主講者:康雅斐.
缺 氧 (hypoxia).
心律失常 新疆医科大学第一附属医院心功能科.
Chaptor 4 Blood Circulation
Jin Yu-hua Dept. of Geriatrics
Circulatory system agents
第十七章 抗心律失常药 刘丹花.
Pharmacology of the cardiovascular system
第17章 治疗充血性心力衰竭药物 Drugs for Congestive Heart Failure
心搏暂停和心动过速依赖性尖端扭转性室速 Locati EH et al, JACC 1992
ARRHYTHMIA (General) Prof. Hua Fu Cardiovascular Department
重症病童輸液問題之處置與照護 成大小兒部 王玠能醫師.
概 述 由多种病因引起的、以慢性高血糖为特征的代谢性疾病。由于胰岛素分泌或/和作用缺陷(胰岛素抵抗),导致碳水化合物、蛋白质、脂肪、水、电解质等代谢异常 急性并发症 慢性并发症.
葉 森 洲 長庚醫院心臟內科 主治醫師 長庚大學醫學系內科 教授
Obesity Drugs Group: 林雨 华峥 俞爽 竺芳欢 杜岩松 刘嘉越余梓仪 都津铭 田煜琦.
Cardiac arrhythmia.
Special Circulation Qiang XIA (夏强), MD & PhD Department of Physiology
Antiarrhythmic Drugs Huifang Tang Department of pharmacology
LOGO 第二十章 抗心律失常药.
1三軍總醫院耳鼻喉頭頸外科部 2國防醫學院耳鼻喉學科
第二十三章 抗心律失常药 Antiarrhythmic drugs
钙拮抗药 Calcium channel blockers
第二节 抗心律失常药.
心 力 衰 竭 中国医科大学附属第一医院 心血管内科教研室 胡 健.
一、神经系统的信号传递 二、电生理学方法介绍
心律失常及护理.
Presentation transcript:

Antiarrhythmic Drugs Huifang Tang Department of pharmacology Zhejiang University School of Medicine tanghuifang@zju.edu.cn

A. Electrophysiological basis of arrhythmias B A. Electrophysiological basis of arrhythmias B. Electrophysiological effects and classification of antiarrhythmic drugs C. Antiarrhythmic drugs D. Proarrhythmic effects of antiarrhythmic drugs

arrhythmias Too rapid; Too slow; Asynchronous; Reduce cardiac output

A. Electrophysiological basis of arrhythmias 1. Normal cardiac electrophysiology Excitability: ability to produce action potentials maximal diastolic potentials (MDP) threshold levels Automaticity: pacemaker phase 4 slope Conductivity: conduction pathways, phase 0 amplitude

Action potential and ion transport Fast response cell

Action potential and effective refractory period

Impulse generation and conduction in the heart

A. Electrophysiological basis of arrhythmias 2. Slow and fast response cells Slow response cells:pacemaker cells fast response cells:conduction and contraction cells Fast response Slow response phase 4 potential -90 mV -70 mV depolarization Na+, 120 mV, 1-2 ms Ca2+, 70 mV, 7 ms automaticity low(0.02 V/s) high(0.1 V/s) conduction fast(200-1000 V/s) slow(10 V/s) effects conduction pacemaker

Schematic representation of the heart and normal cardiac electrical activity (intracellular recordings from areas indicated and ECG). Slow response Fast response ECG

A. Electrophysiological basis of arrhythmias 3. Abnormal generation of impulse (1) Augmented automaticity Augmented automaticity in the myocardial cells other than the sinoatrial node cells will produce arrhythmias Maximal diastolic potential (MDP) in phase 4: ischemia, digitalis, sympathetic excitation, imbalance of electrolytes Fast spontaneous depolarization in phase 4:fast response cells  slow response cells

a. increased phase 4 slope Slow response cells b. decreased thresold levels

A. Electrophysiological basis of arrhythmias (2) Afterdepolarization and triggered activity early afterdepolarization (EAD): phases 2, 3; longer Q-T interval (Torsades de Pointes); Ca2+ inward flow increases induced by drugs, plasma K+  delayed afterdepolarization (DAD): phase 4; Ca2+ inward flow leads to transient Na+ inward flow induced by digitalis intoxication, plasma Ca2+, K+ 

A. delayed afterdepolarization (DAD) Triggered beat Triggered beat A. delayed afterdepolarization (DAD) B. early afterdepolarization (EAD)

A. Electrophysiological basis of arrhythmias 4. Abnormal conduction of impulse (1) Simple conduction block slow and small depolarization in phase 0, reduced MDP level in phase 4 MDP  in ischemia, inflammation, metabolic disorders; Usually occurred in atrioventricular regions

A. Electrophysiological basis of arrhythmias (2) Reentrant reexcitation (reentry) Circuits (especially in enlarged ventricles) ( Wolff-Parkinson-White syndrome) Unidirectional (one-way) block (myocardial injury) Slow conduction Heterogeneity in ERP

Abnormal conduction pathway of Wolff-Parkinson-White syndrome

B. Electrophysiological effects and classification of antiarrhythmic drugs Class I : Na+ channel blockers Class II : receptor blockers Class III : prolongation of APD Class IV : Ca2+ channel blockers

B. Electrophysiological effects and classification of antiarrhythmic drugs 1. Electrophysiological effects of antiarrhythmic drugs (1) Reducing abnormal automaticity decreasing phase 4 slope increasing threshold levels increasing MDP levels in phase 4 increasing action potential duration(APD)

fast response cells A. decreasing phase 4 slope B. increasing threshold levels C. increasing MDP levels in phase 4 D. increasing action potential duration(APD) fast response cells

b. decreasing phase 4 slope Slow response cells c. increasing threshold levels;d. increasing MDP

class IV drugs decrease automaticity of slow response cells B. Electrophysiological effects and classification of antiarrhythmic drugs class IV drugs decrease automaticity of slow response cells class I drugs decrease automaticity of fast response cells class II drugs decrease the augmented automaticity caused by sympathetic excitation

(2) inhibiting afterdepolarization and triggered activity B. Electrophysiological effects and classification of antiarrhythmic drugs (2) inhibiting afterdepolarization and triggered activity EAD:repolarization  (class IB), inward current  (class I, IV) DAD: class IV, I Sympathetic excitation or digitalis:class II

B. Electrophysiological effects and classification of antiarrhythmic drugs (3) Abolishing reentry Modulating conduction Accelerating conduction one-way block  two-way block abolishing one-way block Modulating effective refractory period (ERP) prolonged ERP prolonged ERP/APD homogeneity of ERP

One-way block reentry normal Two-way block abolishing block

Reducing membrane responsiveness Increasing APD and ERP

B. Electrophysiological effects and classification of antiarrhythmic drugs Class I : Na+ channel blockers Class II : receptor blockers Class III : prolongation of APD Class IV : Ca2+ channel blockers

(Na+ channel blockers) Class Ia: recovery time of Na+ channels 1~10s moderately block Na+ channels conduction , APD and ERP  quinidine (奎尼丁) procainamide (普鲁卡因胺)

Class Ib: recovery time of Na+ channels <1s mildly block Na+ channels, no markedly inhibition on conduction, K+ outward flow  shorten APD or no lidocaine (利多卡因) phenytoin( 苯妥英)

Class Ic: recovery time of Na+ channels >10s markedly block Na+ channels, depolarization velocity in phase 0  conduction  no marked effect on repolarization propafenone (普罗帕酮) flecainide (氟卡尼)

B. Electrophysiological effects and classification of antiarrhythmic drugs (2) Class II ( receptor blockers) propranolol 普萘洛尔 (3) Class III (prolongation of APD) amiodarone 胺碘酮, sotalol 索他洛尔 (4) Class IV (Ca2+ channel blockers) verapamil 维拉帕米

B. Electrophysiological effects and classification of antiarrhythmic drugs Class I(Na+ channel blockers) Ia SV, V Ib V Ic SV, V Class II( receptor blockers) SV*, V Class III(prolongation of APD) SV, V Class IV(Ca2+ channel blockers) SV*, V SV:Supraventricular arrhythmias; V: ventricular arrhythmias * primary action sites

Class I drugs: Na+ channel blockers Class Ia drugs Quinidine 奎尼丁

1. Pharmacological effects Na+ channel block muscarinic receptor block (1) Automaticity: depolarization slope in phase 4  abnormal automaticity  (2) Conduction : direct action, one-way  two-way block atrioventricular conduction  because of M receptor block (3) ERP and APD: ERP , APD , ERP/APD  (4) Other effects: hypotension: α receptor block

2. Clinical uses (1) Atrial fibrillation and flutter, pre- and post-cardioversion conversion to sinus rhythm (pretreated with digitalis) maintaining sinus rhythm (2) Other arrhythmias ventricular and supraventricular arrhythmias

3. Adverse effects (1) Extracardiac effects: GI reactions, hypotension, Chichonism, allergy (2) Cardiac toxicity: prolonged QRS and QT intervals, quinidine syncope, paradoxical ventricular tachycardia (3) Arterial embolism: after cardioversion

4. Drug interactions (1) Hepatic enzyme inducers (barbiturates, phenytoin, etc.): increase the metabolism of quinidine (2) Hepatic enzyme inhibitors (cimitidine, verapamil, etc.): decrease the metabolism of quinidine (3) Combined with digoxin: reducing the dose of digoxin

Class Ib drugs Lidocaine 利多卡因

1. ADME Low bioavailability after oral administration Rapid elimination after i.v. injection Given by i.v. infusion ( i.v. gtt )

Procainamide 普鲁卡因胺 Effects and uses are similar to quinidine, but weak to atrial fibrillation and flutter induces GI reactions, hypotesion, allergy, occasionally systemic erythematosus lupus (long-term use)

2. Pharmacological effects (1) Automaticity:reducing spontaneous depolarization in phase 4 of Purkinje fibers (2) Conduction: therapeutic dose: no remarkable effects larger doses, K+ , pH  : decrease MDP , K+ : increase (3) APD and ERP:Na+ inward flow  in phase 2 K+ outward flow  in phase 3 ERP , APD  , ERP/APD 

3. Clinical uses Ventricular arrhythmias: acute myocardial infarction intoxication of digitalis general anesthetics, etc.

4. Adverse effects (1) CNS depression (2) Hypotension (3) Arrhythmias: bradycardia, A-V block

Phenytoin Sodium 苯妥英钠 Effects and uses are similar to lidocaine More effective on digitalis toxicity because of competition to Na+-K+-ATPase

Class IC drugs Propafenone 普罗帕酮

1. Pharmacological effects Reducing automaticity and conduction of fast response cells in atrium and Purkinje fibers 2. Clinical uses Supraventricular and ventricular arrhythmias 3. Adverse effects GI reactions, postural hypotension, arrhythmias

Flecainide 氟卡尼

1. Pharmacological effects Similar to Propafenone 2. Clinical uses Supraventricular and ventricular arrhythmias, as a second choice 3. Adverse effects CNS, arrhythmias, etc.

Class II drugs: β adrenergic receptor blockers Propranolol 普萘洛尔

1. Pharmacological effects Reducing sinus, atrial, ventricular automaticity Reducing A-V and Purkinje fiber conduction Prolonging A-V node ERP 2. Clinical uses Supraventricular arrhythmias Ventricular arrhythmias caused by exercise, emotion, ischemic heart diseases, anesthetics, digitalis, etc. 3. Adverse effects Conduction block, bradycardia, contractility , and many other reactions

Class III drugs: prolongation of APD Amiodarone 胺碘酮

1. Pharmacological effects (1) Cardiac electrophysiological effects Na+, Ca2+, K+ channel block Prolonging repolarization: APD , ERP  Reducing sinus and Purkinje fiber automaticity, and A-V and Purkinje fiber conduction (2) Vasodilatation Reducing peripheral resistance Reducing cardiac oxygen consumption Increasing coronary blood flow

2. Clinical uses Supraventricular and ventricular arrhythmias Longer action duration (t1/2 25 ± 12 days), effects maintained after 4 – 6 weeks of withdrawal

3. Adverse effects (1) Arrhythmias Bradycardia, A-V block, prolonged Q-T intervals (2) Iodine reactions Iodine allergy, hypo- and hyperthyroidism, iodine accumulation in cornea and skin (3) Others Hypotension, tremor, interstitial pulmonary fibrosis, etc.

Sotalol 索他洛尔

Selectively blocks delayed rectifier K+ currents (快速激活的延迟整流钾通道Ikr) No-selective  receptor antagonist Prolonging repolarization: APD , ERP  No remarkable effects on conduction Used for supraventricular and ventricular arrhythmias, arrhythmias in acute myocardial infarction Prolonged Q-T, dysfunction of sinus, cardiac failure

Class IV drugs: Ca2+ channel blockers Verapamil 维拉帕米

1. Pharmacological effects (1) Antiarrhythmic effects: Reducing spontaneous depolarization in phase 4 and depolarization rate in phase 0 of slow response cells Reducing automaticity and conduction of sinus and atrial tissues Effective on abnormal pacemaker cells from fast response to slow response in cardiac injury (such as ischemia) (2) Other effects: depressing cardiac contraction, vasodilatation

2. Clinical uses Supraventricular: tachycardia, atrial arrhythmias Ventricular: myocardial ischemia, digitalis toxicity 3. Adverse effects Depressing cardiac electrophysiological function and contractility, hypotension, etc. Combined with class II drugs and quinidine: potentiating cardiac depression

Other antiarrhythmic drugs Adenosine 腺苷 Activating adenosine receptors and ACh-sensitive K+ channels, prolonging ERP of A-V node, decreasing conduction and automaticity Rapid elimination, t1/2 10~20 seconds, i.v. injection Used for acute superventricular tachycardia Cardiac and respiration depression (i.v. injection)

Drug choice Sinus tachycardia: β antagonists; verapamil Atrial premature contraction: β antagonists; verapamil; class I drugs Atrial flutter or fibrillation: Cardioversion: quinidine (digitalis) Ventricular rate control: β antagonists, verapamil, digitalis Paroxysmal superventricular tachycardia: verapamil; digitalis, β antagonists, adenosine, etc. Ventricular premature contraction: procainamide, lidocaine, phenytoin, etc. Ventyricular fibrillation: lidocaine, procainamide, amiodarone, etc.

D. Proarrhythmoc effects of antiarrhythmic drugs All antiarrhythmic drugs have the proarrhythmic effects 表现为: 原有的心律失常加重 出现新的心律失常 严重者有: 尖端扭转型室性心动过速 室颤 心脏停搏 对策: 谨慎用药 控制病因 合理选择和应用 用药的个体化

D. Proarrhythmoc effects of antiarrhythmic drugs Other drugs digitalis ions (iv): Ca2+, K+ antimicrobials: amantadine, SMZ, TMP, chloroquine, erythromycin neuroleptics: haloperidol antidepressants:imipramine, amitryline antihistamines: terfenadine, cimitidine

抗心律失常药的致心律失常作用 几乎所有的抗心律失常药物都有致心律失常的副作用 原有心律失常加重或恶化; 引起新的心律失常(室性心动过速、室颤、心脏停搏)

抗心律失常药的致心律失常作用 目前主张对一般心律失常少用Ⅰa、Ⅰc 类。 对策: 谨慎用药;控制病因;合理选择和应用;用药的个体化

记住几种疾病的首选药物 心律失常 首选药 窦性心动过速 病因治疗,心得安 房颤、房扑 转律:奎尼丁 ↓心室率:强心苷 房早 心得安 阵发性室上速 维拉帕米 急性心梗致室速 利多卡因 强心苷中毒致室速 苯妥英钠 阵发性室速 室颤

抗心律失常药引起心律失常 大多数抗心律失常药可引起心律失常.抗心律失常药引起的快速心律失常包括室上性心动过速和室性心动过速。洋地黄中毒可引起房颤、房扑、交界心律、房速伴传导阻滞。

如I类(钠通道阻滞剂)、Ⅱ类(β-受体阻滞剂)、Ⅳ类(钙拮抗剂)等抗心律失常药及洋地黄均可引起窦性心动过缓、窦房阻滞或窦性静止,大剂量或高浓度时可引起房室传导阻滞等缓慢型心律失常。

I类 I类抗心律失常药可引起室上性心动过速。Ia类药物如奎尼丁、丙吡胺、普鲁卡因胺,I类药物特别是Ia、Ic以及心律平、乙吗噻嗪可引起多型室速、单型室速、非持续室速转变的持续室速及室早次数增加等。 I类(钠通道阻滞剂)也可引起窦性心动过缓、窦房阻滞或窦性静止,大剂量或高浓度时可引起房室传导阻滞等缓慢型心律失常。 快通道阻滞剂奎尼丁、普鲁卡因胺、达舒平等易致Q-T间期延长;安卡因由于可使除极传导速度减慢,易致QRS间期延长; 奎尼丁:该药中毒时可致室性期前收缩,室性心动过速及室颤等,可能是由于心内传导减慢导致局限性单向性阻滞,导致折返性心率紊乱。普鲁卡因胺对心脏的毒性与奎尼丁相似。胺碘酮与奎尼丁联用时,有出现室性心动过速的潜在危险。

II类 II类(β-受体阻滞剂) 均可引起窦性心动过缓、窦房阻滞或窦性静止,大剂量或高浓度时可引起房室传导阻滞等缓慢型心律失常。 β受体阻滞剂可抑制儿茶酚胺加快心室肌内除极速度的效应,而使各部分心肌传导速度不一致,造成折返性心律失常等。这种致心律失常作用的发生率在10%以上,甚至可引起突然死亡。左心室功能减退、室性心律失常引起血液动力学障碍的病人,更易诱发心律失常,用药须谨慎。

III类 Ⅲ类(延长复极过程药)如胺碘酮、溴苄胺及等均可致Q-T间期延长伴扭转型室速。 溴苄胺:兴奋交感神经,导致自主神经功能失调,加重心律失常;心律平抑制窦房结和心脏传导功能,可造成窦性心动过缓,窦性停搏及多种不同类型的传导阻滞; 胺碘酮:其所致心血管不良反应中,发生无症状窦性心动过速占23%,严重心动过缓占3%,房室传导阻滞占9.1%,窦房传导阻滞占1.5%,室内传导阻滞占3%,早搏占1.5%。

IV类 Ⅳ类(钙拮抗剂)可引起窦性心动过缓、窦房阻滞或窦性静止,大剂量或高浓度时可引起房室传导阻滞等缓慢型心律失常。 硝苯地平等均可致Q-T间期延长伴扭转型室速,亦可引起房室传导阻滞,心动过缓,窦性停搏。 维拉帕米可引起窦性停搏和房室阻滞。

洋地黄制剂 可引起各类型心律失常,包括冲动形成和传导异常,或两者并存。常见心律失常有:房性心动过速、心房纤颤及扑动、房性早搏、交界性心动过速、房室传导阻滞、室性期前收缩、室性心动过速等。心律失常发生率可高达66%。

The end