丁建均 (Jian-Jiun Ding) National Taiwan University

Slides:



Advertisements
Similar presentations
1 時 頻 分 析 近 年 來 的 發 展時 頻 分 析 近 年 來 的 發 展 丁 建 均 國立台灣大學電信工程學研究所 Recent Development of Time-Frequency Analysis.
Advertisements

國立交通大學應用數學系 數學建模與科學計算研究所 簡 介. 隨著科技的日新月異,人類為追求完美的生活,其 所面臨的科學與工程問題也日趨複雜,舉凡天氣的 預測、飛機的設計、生物醫學中的神經網路、奈米 材料的研發、衍生性金融產品的定價、甚至交通流 量的監測等問題,透過「數學建模」的量化過程, 再配合以「科學計算」的方式去模擬現象並嘗試尋.
663 Chapter 14 Integral Transform Method Integral transform 可以表示成如下的積分式的 transform  kernel Laplace transform is one of the integral transform 本章討論的 integral.
Final Review Chapter 1 Discrete-time signal and system 1. 模拟信号数字化过程的原理框图 使用 ADC 变换器对连续信号进行采样的过程 使用 ADC 变换器对连续信号进行采样的过程 x(t) Analog.
數位訊號處理 第4章 離散時間訊號與LTI系統之傅利葉分析
王晨 指导教师:张军平副教授 复旦大学计算机科学技术学院 上海市智能信息处理重点实验室
Magnetic resonance imaging, MRI
生物医学信号处理.
第十章 图像的频域变换.
資料探勘(Data Mining)及其應用之介紹

Digital Signal Processing 授课教师:胡慧珠
XI. Hilbert Huang Transform (HHT)
Leftmost Longest Regular Expression Matching in Reconfigurable Logic
CHT Project Progress Report
Signal and Systems 教師:潘欣泰.
A TIME-FREQUENCY ADAPTIVE SIGNAL MODEL-BASED APPROACH FOR PARAMETRIC ECG COMPRESSION 14th European Signal Processing Conference (EUSIPCO 2006), Florence,
AN INTRODUCTION TO OFDM
THE JOURNAL OF CHINA UNIVERSITIES OF POSTS AND TELECOMMUNICATIONS
IV. Implementation IV-A Method 1: Direct Implementation 以 STFT 為例
Time Frequency Analysis and Wavelet Transforms Oral Presentation
Applications of Digital Signal Processing
XV. Applications of Wavelet Transforms
丁建均 (Jian-Jiun Ding) National Taiwan University
V. Homomorphic Signal Processing
XVI. Applications of Wavelet Transforms
Image Retrieval Based on Fractal Signature
Manifold Learning Kai Yang
Differential Equations (DE)
Time Frequency Analysis and Wavelet Transforms 時頻分析與小波轉換
研究、論文、計畫與生活之平衡 演講人:謝君偉 元智大學電機系 2018年11月22日.
單元3:軟體設計 3-2 順序圖(Sequence Diagrams)
X. Other Applications of Time-Frequency Analysis
Digital Terrain Modeling
信号与图像处理基础 An Introduction to Signal and Image Processing 中国科学技术大学 自动化系
II. Short-time Fourier Transform
VI. Brief Introduction for Acoustics
Principle and Application of Digital Television
Wavelet transform 指導教授:鄭仁亮 學生:曹雅婷.
Source: IEEE Transactions on Image Processing, Vol. 25, pp ,
2012清大電資院學士班 「頂尖企業暑期實習」 經驗分享心得報告 實習企業:工業技術研究院 電光所 實習學生:電資院學士班  呂軒豪.
A Study on the Next Generation Automatic Speech Recognition -- Phase 2
Inventory Management (Deterministic Model): Dynamic Lot-Sizing Problem & Capacitated Lot-Sizing Problem Prof. Dr. Jinxing Xie Department of Mathematical.
A high payload data hiding scheme based on modified AMBTC technique
Advanced Digital Signal Processing 高等數位訊號處理
第三章 付里叶分析 离散付氏级数的数学解释(The Mathematical Explanation of DFS)
1 离散信号 2019/4/10.
數位浮水印技術及其應用.
XIV. Orthogonal Transform and Multiplexing
一個基于相鄰區塊相似性和動態次編碼簿的低位元率向量量化 圖像壓縮法
VII. Data Compression (A)
图像DCT变换 《信息隐藏实验教程》教学幻灯片 五.
以四元樹為基礎抽取圖片物件特徵 之 影像檢索
X. Other Applications of Time-Frequency Analysis
XI. Hilbert Huang Transform (HHT)
96學年度第二學期電機系教學助理課後輔導進度表(三)(查堂重點)
(二)盲信号分离.
An Quick Introduction to R and its Application for Bioinformatics
IV. Implementation IV-A Method 1: Direct Implementation 以 STFT 為例
人民音乐出版社 七年级.
HHT 2009/01/19 showmin.
第三章 音樂檢索技術 1) 內涵式音樂資訊檢索(content-based music information retrieval)
II. Short-time Fourier Transform
Introduction to Computer Security and Cryptography
Surface wave dispersion measurements using Hilbert-Huang Transform
Principle and application of optical information technology
阶段性词汇训练3 上海海事大学信息工程学院.
Gaussian Process Ruohua Shi Meeting
Hybrid fractal zerotree wavelet image coding
Presentation transcript:

丁建均 (Jian-Jiun Ding) National Taiwan University 辦公室:明達館723室, 實驗室:明達館531室 聯絡電話: (02)33669652 Major:Digital Signal Processing Digital Image Processing http://djj.ee.ntu.edu.tw/djj_study.ppt

Research Fields (1) Image Compression (page 3) (2) Segmentation (page 13) (3) Pattern Recognition (Face, Character) (page 19) (4) Time-Frequency Analysis (page 22) (5) Music Signal Analysis (page 34) (6) Bioinformatics (page 38) (7) ECG Signal Analysis (page 42) 專題研究相關規定 (page 47)

1. Image Compression 要學習的項目: (1) 影像處理的基本技巧 (2) JPEG 程式的編寫 (3) 誤差的量測方式 (4) 其他影像壓縮的技術 (5) 查資料和做研究的方法和技巧

Conventional JPEG method: Separate the original image into many 8*8 blocks, then using the DCT to code each blocks. DCT: discrete cosine transform

壓縮的基本原理: 影像在經過 discrete cosine transform (DCT) 之後,大部分的能量都集中在低頻 DCT

問題:壓縮率高的時候,會產生 blocking effect JPEG 是當前最普及的影像壓縮格式。 問題:壓縮率高的時候,會產生 blocking effect Compression ratio = 53.4333 RMSE = 10.9662

New Method: Edge-Based Segmentation and Compression 和小時候畫圖的方法類似

Image Segment Compression Segmentation-based image compression Boundary Boundary Compression Image Segmentation Bit stream An image Image Segment Compression Image Segment

Original Image By JPEG By Proposed Method An 100x100 image Bytes: 1295, RMSE: 2.39 Bytes: 456, RMSE: 2.54

原圖 (10000 bytes) 使用 JPEG (692 bytes) 使用 JPEG (233 bytes) 使用新方法 (165 bytes)

折衷的方法: 既不按照 88 的方格來做切割,也不完全按照物體的形狀 Triangular and Trapezoid (梯形) Block Segmentation

技術上的問題: (1) 如何找到物體的邊緣並切割?(努力中) (2) 如何針對不規則的區域,找到 orthogonal transform (已解決) (3) 如何避免讓邊緣區域的高頻成分影響到壓縮的結果 (已解決) (4) 如何用最小的資料量,對邊界的部分做紀錄 (已解決) (5) 如何用最小的資料量,對內部的部分做紀錄 (努力中) (6) 減少壓縮和解壓縮的運算時間 (努力中)

2. Segmentation Important for compression biomedical engineering object identification 要學習的項目: (1) 影像處理的基本技巧 (2) Image segmentation 程式的編寫 (3) Image segmentation 的應用 (4) 查資料和做研究的方法和技巧

Conventional method: 97.87 sec New method: 1.02 sec

未受過傷的老鼠肌肉纖維 受過傷的老鼠肌肉纖維

未受過傷的老鼠肌肉纖維「分區」的結果

受過傷的老鼠肌肉纖維「分區」的結果

大腦核磁共振影像 (Brain MRI Image) (a) Brain MRI Image (b) White Matter (白質) (c) Gray Matter (灰質) (d) 腦髓液蛋白,頭蓋骨

3. Pattern Recognition including face recognition (子題目一) character recognition (子題目二) 二選一 應用很廣: security, identification, computer vision ………… 要學習的項目: (1) 影像處理的基本技巧 (2) 特徵擷取的技術 (角,邊緣,骨架 …) (3) Pattern 判斷的方式 (4) 查資料和做研究的方法和技巧

Category “A” Category “B” Classification Clustering

最簡單的方法: matched filter 但技術上的問題頗多………. scaling shadow rotation partially distortion 目前較常用的方法: Feature Extraction + Machine Learning 臉有哪些特徵?

4. Time-Frequency Analysis 要學習的項目: (1) 使用 Fourier transform 來分析信號頻譜的正確方式 (2) 聲音信號處理的基本知識和技巧 (3) Short-time Fourier transform 的編寫 (4) Hilbert-Huang transform 的編寫 (5) 其他時頻分析的方法 (6) 查資料和做研究的方法和技巧

Fourier transform (FT) Time-Domain  Frequency Domain Some things make the FT not practical: (1) Only the case where t0  t  t1 is interested. (2) Not all the signals are suitable for analyzing in the frequency domain. It is hard to analyze the signal whose instantaneous frequency varies with time.

Example: x(t) = cos( t) when t < 10, x(t) = cos(2 t) when t  20 (FM signal)

Using Time-Frequency analysis x(t) = cos( t) when t < 10, x(t) = cos(3 t) when 10  t < 20, x(t) = cos(2 t) when t  20 (FM signal) Left:using Gray level to represent the amplitude of X(t, f) Right:slicing along t = 15 f -axis t -axis t -axis

Several Time-Frequency Distribution Short-Time Fourier Transform (STFT) with Rectangular Mask Gabor Transform avoid cross-term less clarity Wigner Distribution Function with cross-term high clarity Gabor-Wigner Transform (Proposed) avoid cross-term high clarity Hilbert-Huang Transform

Applications of Time-Frequency Analysis (1) Finding Instantaneous Frequency (2) Music Signal Analysis (3) Sampling Theory (4) Modulation and Multiplexing (5) Filter Design (6) Random Process Analysis (7) Signal Decomposition (8) Electromagnetic Wave Propagation (9) Optics (10) Radar System Analysis (11) Signal Identification (12) Acoustics (13) Biomedical Engineering (14) Spread Spectrum Analysis (15) System Modeling (16) Image Processing (17) Economic Data Analysis (18) Signal Representation (19) Data Compression (20) Seismology (21) Geology

Conventional Sampling Theory Nyquist Criterion New Sampling Theory (1) t can vary with time (2) Number of sampling points == Area of time frequency distribution

假設有一個信號,  The supporting of x(t) is t1  t  t1 + T, x(t)  0 otherwise  The supporting of X( f )  0 is f1  f  f1 + F, X( f )  0 otherwise 根據取樣定理, t  1/F , F=2B, B:頻寬 所以,取樣點數 N 的範圍是 N = T/t  TF 重要定理:一個信號所需要的取樣點數的下限,等於它時頻分佈的面績

Modulation and Multiplexing spectrum of signal 1 -B1 B1 spectrum of signal 2 not overlapped B2 -B2

Improvement of Time-Frequency Analysis (1) Computation Time (2) Tradeoff of the cross term problem and clarification (3) Hilbert-Huang Transform (HHT)

An Example of the Hilbert-Huang Transform Envelopes

IMF1 IMF2 x0(t)

5. Music Signal Analysis 要學習的項目: (1) 使用 Fourier transform 來分析信號頻譜的正確方式 (2) 聲音信號處理的基本知識和技巧 (3) Query by humming (哼歌辨識)程式的了解 (4) 哼歌辨識程式的改良 (5) 查資料和做研究的方法和技巧

Using the time-frequency analysis 聲音檔:http://djj.ee.ntu.edu.tw/Chord.wav La Fa Re So Mi Do La Mi Do

聲音檔:http://djj.ee.ntu.edu.tw/air.mp3 time-frequency analysis

目標: 音樂信號搜尋 (運用音的高低和拍子) 音樂信號壓縮 目前的成果:20秒長度的哼歌,辨識成功率為 100% 但仍有不少精益求精的空間

6. Signal Processing for Bioinformatics (生物資訊學) 要學習的項目: (1) 使用 FFT 來計算 convolution 和 correlation 的正確方式 (2) 生物資訊學相關的知識 (3) Sequence matching 程式的編寫 (4) 加速 sequence matching 速度的方法 (5) 查資料和做研究的方法和技巧  There are four types of nucleotide in a DNA sequence: adenine (A), guanine (G), thymine (T), cytosine (C)  Unitary Mapping bx[] = 1 if x[] = ‘A’, bx[] = 1 if x[] = ‘T’, bx[] = j if x[] = ‘G’, bx[] = j if x[] = ‘C’. y = ‘AACTGAA’,  by = [1, 1, j, 1, j, 1, 1].

 Discrete Correlation Algorithm for DNA Sequence Comparison For two DNA sequences x and y, if where Then there are s[n] nucleotides of x[n+] that satisfies x[n+] = y[].  Example: x = ‘GTAGCTGAACTGAAC’, y = ‘AACTGAA’, . x = ‘GTAGCTGAACTGAAC’, y (shifted 7 entries rightward) = ‘AACTGAA’.

 Example: x = ‘GTAGCTGAACTGAAC’, y = ‘AACTGAA’, s[n] = . Checking: x = ‘GTAGCTGAACTGAAC’, y = ‘AACTGAA’. (no entry match) x = ‘GTAGCTGAACTGAAC’, y = (shifted 2 entries rightward) ‘AACTGAA’. (6 entries match) x = ‘GTAGCTGAACTGAAC’, y (shifted 7 entries rightward) = ‘AACTGAA’. (7 entries match)

 Advantage of the Discrete Correlation Algorithm: ---The complexity of the conventional sequence alignments is O(N2) ---For the discrete correlation algorithm, the complexity is reduced to O(N log2N) or O(N log2N + b2) b: the length of the matched subsequences Experiment: Local alignment for two 3000-entry DNA sequences Using conventional dynamic programming Computation time: 87 sec. Using the proposed discrete correlation algorithm: Computation time: 4.13 sec.

7. ECG (心電圖) Signal Analysis 要學習的項目: (1) 信號處理的基本知識和技巧 (2) 聲音信號處理的基本技巧 (3) 特徵點擷取程式的編寫 (4) ECG signal analysis 程式的編寫 (5) 查資料和做研究的方法和技巧

7. ECG (心電圖) Signal Analysis 典型心電圖 R R T T P P Q Q S S

(a) The Original Signal (The First ECG Signal in 9.bmp) (b) Find the Baseline (c) Subtracted by the Baseline

實際上量測到的心電圖

Telehealth (遠距醫療) Can we perform health examination by the ibon machine in 7-11 or at home?

專題研究相關規定 (1) 原則上,一週 meeting 一次,方式為老師和同學一對一討論 (提早於暑假開始,或是學期第幾週之後再開始皆可) 前八週:學習相關的基礎知識 後六週:會給一個小題目,讓同學們嚐試看看 (3) 研究題目,由第 2 頁所列的題目當中任選一個來研究 (4) 工作內容包括: 看論文,學習相關知識,編寫程式做模擬,幫忙撰寫論文投稿

(5) 所需基礎知識: 信號與系統,MATLAB (6) 關於專題研究的定位: a. 從大學 (學習導向)到研究所(創造導向)中間的銜接 b. 寫程式和做研究基本功的練習

無論是訊號處理和影像處理,都是變化多、富有彈性 鼓勵各位同學多多發揮創意 從不同角度來研究問題 無論是訊號處理和影像處理,都是變化多、富有彈性 很容易創新的領域 投影片資料下載: http://djj.ee.ntu.edu.tw/djj_study.ppt