半導體雷射講義 (Part 3 – AlGaAs Quantum-Well Lasers and VCSELs)

Slides:



Advertisements
Similar presentations
期末考试作文讲解 % 的同学赞成住校 30% 的学生反对住校 1. 有利于培养我们良好的学 习和生活习惯; 1. 学生住校不利于了解外 界信息; 2 可与老师及同学充分交流有 利于共同进步。 2. 和家人交流少。 在寄宿制高中,大部分学生住校,但仍有一部分学生选 择走读。你校就就此开展了一次问卷调查,主题为.
Advertisements

基礎半導體物理 Energy Bands and Carrier Concentration in Thermal Equilibriumn
半導體雷射技術 盧延昌、王興宗 著.
(复习课) 光学复习.
饮食治疗篇.
LED發展趨勢 與模擬分析研討會 郭艷光Yen-Kuang Kuo 美國南加州大學(USC)電機研究所博士
版權所有 翻印必究 指導教授:林克默 博士 報告學生:許博淳 報告日期: 2011/10/24. 版權所有 翻印必究 Results and discussion The crystalline peak at 33° corresponds to the diffraction of the (200)
微生物燃料电池 王金玉
透過成長在矽基板上的氧化緩衝層與嵌入式氧化釔分佈布拉格反射鏡去增強氮化鎵系列的uv光檢測器響應
An Ultra-Wearable, Wireless, Low Power ECG Monitoring System
IEEE TRANSACTIONS ON MAGNETICS, VOL. 49, NO. 3, MARCH 2013
Student : Shian-yi yang Student ID:M99L0107
量子物理概論, 固態能帶概念, 物質導電度, 半導體材料
Research Status--- High-Efficiency Organic Light-Emitting Diode
國立彰化師範大學物理系 Reporter:楊勝州
Population proportion and sample proportion
模式识别 Pattern Recognition
能發光最美 電激發光高分子材料(PLED) 國立成功大學 化工系 陳 雲 液晶高分子材料、高分子奈米材料、聚氨酯材料
『從原子到宇宙』課程第四週 胡維平 國立中正大學化學暨生物化學系 10/06/2011
D. Halliday, R. Resnick, and J. Walker
Fiber-Optic Communication Technology
氮化銦鎵藍光發光二極體效率衰退之抑制 Reduction of efficiency droop in Blue InGaN LEDs
ITO薄膜晶体管辅助层的文献调研 姓名:刘洋 学号: 研究小组:TFT一组 薄膜晶体管与先进显示技术实验室
Purposes of Mold Cooling Design
Noise & Distortion in Microwave Systems.
§5.6 Hole-Burning and The Lamb Dip in Doppler- Broadened Gas Laser
雷射物理 : 雷射簡介 雷射的特性 雷射基本原理 各式雷射介紹 雷射應用.
Sampling Theory and Some Important Sampling Distributions
普通物理 General Physics 27 - Circuit Theory
Fundamentals of Physics 8/e 27 - Circuit Theory
EVS-05-27e Action items7 China will provide language for low battery energy warning by next EVS IG meeting.
Short Version : 6. Work, Energy & Power 短版: 6. 功,能和功率
機械波 Mechanical Waves Mechanical wave is a disturbance that travels through some material or substance called the medium for wave. Transverse wave is the.
產品肉厚的考量 製造生產上的影響 產品性能的影響 補強與防止變形的方法
干涉與繞射(I) 有哪些現象是和『干涉』『繞射』有關? 為什麼有的叫干涉?有的叫繞射?如何區分? 同調性 coherent.
Concepts of Semiconductors
普通物理 General Physics 29 - Current-Produced Magnetic Field
排氣 Vent 為何排氣仍然還是一個問題? Why venting is still a problem ?
Fundamentals of Physics 8/e 31 - Alternating Fields and Current
Interval Estimation區間估計
參加2006 SAE年會-與會心得報告 臺灣大學機械工程系所 黃元茂教授
九十二學年度第二學期Study Meeting報告
塑膠材料的種類 塑膠在模具內的流動模式 流動性質的影響 溫度性質的影響
辐射带 1958年:探险者一号、探险者三号和苏联的卫星三号等科学卫星被发射后科学家出乎意料地发现了地球周围强烈的、被地磁场束缚的范艾伦辐射带(内辐射带)。 这个辐射带由能量在10至100MeV的质子组成,这些质子是由于宇宙线与地球大气上层撞击导致的中子衰变产生的,其中心在赤道离地球中心约1.5地球半径。
2012清大電資院學士班 「頂尖企業暑期實習」 經驗分享心得報告 實習企業:工業技術研究院 電光所 實習學生:電資院學士班  呂軒豪.
Neutron Stars and Black Holes 中子星和黑洞
通信工程专业英语 Lesson 19 Guided Transmission Media 第19课 导向传输介质
半導體物理 基本原理 半導體物理-基本原理.
(III-Se) and IIISe/Graphene heterostructure Photodetectors
Fundamentals of Physics 8/e 0 – Table of Contents
普通物理 General Physics 21 - Coulomb's Law
Mechanics Exercise Class Ⅰ
交流阻抗的量測與分析 交流阻抗 (AC Impedance) 電阻的阻抗 Z=R 電容的阻抗 電感的阻抗 Z〞 ω變大 R Z′
光電科技 (二)光電半導體與光電元件 劉榮平 逢甲大學 光電學系.
虚 拟 仪 器 virtual instrument
使用ALD在一般HEMT結構上沉積氧化鋁Al2O3當成閘汲絕緣層形成MOSHEMT
半導體專題實驗 實驗一 熱電性質與四點探針方法.
Q & A.
Nucleon EM form factors in a quark-gluon core model
名词从句(2).
Q1: How do we determine the crystal structure?
定语从句(11).
名词从句(4) (复习课).
定语从句(2).
X-ray sources X-rays have the proper wavelength (in the Ångström range, ~10-10 m) to be scattered by the electron cloud of an atom of comparable size (we.
For increase module power efficiency.
Principle and application of optical information technology
Ultra-high-voltage(UHV) electricity transmission
第七章 振动和波.
XFiber Advance Series 1030 nm 高功率皮秒激光器 工业级超快激光器
Presentation transcript:

半導體雷射講義 (Part 3 – AlGaAs Quantum-Well Lasers and VCSELs) 教師: 郭艷光博士 國立彰化師範大學物理系所暨光電研究所 電子郵件: ykuo@cc.ncue.edu.tw 網頁: http://ykuo.ncue.edu.tw

Optoelectronic Semiconductor Materials The elementary and compound semiconductor materials are useful in electric and optical applications. We will discuss the fundamental characteristics of a few semiconductor materials that are important in optical applications. In this chapter, we will start with the AlGaAs because it possesses unique material properties. The AlAs and the GaAs have almost identical lattice constants, which indicates that the ternary AlxGa1-xAs compounds can be grown on the GaAs substrate with very little strain and hence a very small density of traps (caused by defects) at the interface can be expected. In addition to the AlGaAs, there are several semiconductor materials that have important application in the light emitting diodes (LED) and laser diodes (LD). We will focus on the InxGa1-xAsyP1-y/InP that is important in optical fiber communication (Chapter 4), the (AlxGa1-x)0.5In0.5P/GaAs that has important application in 570~670 nm (yellowish green to red) LED and LD (Chapter 5), and InxGa1-xN/Al2O3 that has important application in ultraviolet (UV) and visible LED and LD (Chapter 6). 2003/09/15 半導體雷射講義-3 / 國立彰化師範大學物理系所暨光電研究所 / 郭艷光

The Problems of a Homojunction Semiconductor Laser In a traditional homojunction semiconductor laser, as in the case for every equilibrium p-n junction, the Fermi level is constant throughout the device with no current flow. When the junction is biased in the forward direction, the Fermi level splits because of the injection of minority carriers (electrons into the p region, holes into the n region) and there exists a region near the junction where there is simultaneously a high density of electrons and a high density of holes. Because of the much higher mobility of electrons compared to that of holes, most of the injection is by electrons into the p region. The electrons recombine with the majority holes after diffusing a distance, d ( 0.93 mm for GaAs). The (lateral) laser mode might extend over a larger distance than the diffusing distance d. In this situation, the central part of the laser mode experiences gain, whereas the edges experience loss. The simple p-n junction lasers have two major drawbacks: (1) the injected minority carriers are “free” to diffuse that dilutes the spatial distribution of recombination and thus the gain; (2) there is very little guiding and confinement of the electromagnetic wave being amplified. 2003/09/15 半導體雷射講義-3 / 國立彰化師範大學物理系所暨光電研究所 / 郭艷光

Homojunction Semiconductor Lasers 2003/09/15 半導體雷射講義-3 / 國立彰化師範大學物理系所暨光電研究所 / 郭艷光

Band Gap and Refractive Index of AlxGa1-xAs The problems of the simple p-n junction lasers can be solved by the use of heterostructures to form the active portion of the laser. These are junctions between two dissimilar materials such as GaAs with AlxGa1-xAs, with x being the fraction of gallium being replaced by aluminum. For the AlxGa1-xAs, as the percentage of aluminum is increased (x), the band gap increases and the index of refraction decreases, and this asynchronous behavior is true for quaternary alloy combinations also. This fact is truly God’s gift to the semiconductor laser field, for it greatly alleviates the problems encountered by the homojunction lasers. The AlxGa1-xAs is a direct band gap semiconductor material when the aluminum composition, x, is smaller than ~0.45, and becomes an indirect band gap semiconductor material when x is greater than ~0.45. 2003/09/15 半導體雷射講義-3 / 國立彰化師範大學物理系所暨光電研究所 / 郭艷光

AlxGa1-xAs Semiconductor Materials Band gap is quite linear when 0  x  0.45. Refractive index is linear when 0  x  1. 2003/09/15 半導體雷射講義-3 / 國立彰化師範大學物理系所暨光電研究所 / 郭艷光

Electronic and Optical Properties of DH Lasers p-type Layer Index n-type Layer ~0.2μm Undoped Active Layer Electrons Holes Band Gap Energy Light n1 n2 Conduction Band Mode Profile Valence Band Carrier Confinement Optical Confinement 2003/09/15 半導體雷射講義-3 / 國立彰化師範大學物理系所暨光電研究所 / 郭艷光

Double-Heterostructure Semiconductor Lasers Size of a Laser Diode  300 m (L)  200 m (W)  100 m (H) Laser Threshold: R1R2e2gL = 1 g = (1/2L) ln(1/ R1R2) If R1 = R2 = [(n-1)/(n+1)]2 = [(3.5-1)/(3.5+1)]2 = 0.3, Then g = [1/(230010-6)] ln[1/(0.30.3)]  4000 m-1 = 40 cm-1 2003/09/15 半導體雷射講義-3 / 國立彰化師範大學物理系所暨光電研究所 / 郭艷光

AlxGa1-xAs Double-Heterostructure Semiconductor Lasers 2003/09/15 半導體雷射講義-3 / 國立彰化師範大學物理系所暨光電研究所 / 郭艷光

Quantum-Well Semiconductor Lasers A double-heterostructure laser consists of an active layer sandwiched between two higher-gap cladding layers. The active layer thickness is typically in the range of 0.1-0.3 m. If the double-heterostructure laser with an active-layer thickness of ~10 nm is fabricated, the carrier (electron or hole) motion normal to the active layer is restricted. As a result, the kinetic energy of the carriers moving in that direction is quantized into discrete energy levels similar to the quantum-mechanical problem of the one-dimensional potential well. Quantum-well lasers have many advantages: 1) laser wavelength can be varied by changing the well width, 2) lower threshold current, 3) higher quantum efficiency, and 4) narrower linewidth. If there is only one quantum well in the active layer, we call it a Single Quantum-Well (SQW) structure; if there are a few quantum wells in the active layer, we call it a Multiple Quantum-Well (MQW) structure. 2003/09/15 半導體雷射講義-3 / 國立彰化師範大學物理系所暨光電研究所 / 郭艷光

Manipulating the Laser Wavelength by Varying the Thickness of the Quantum Well Lz   l  2003/09/15 半導體雷射講義-3 / 國立彰化師範大學物理系所暨光電研究所 / 郭艷光

Eigenfunction and Eigenenergy in a Quantum-Well Structure For finite well: En becomes smaller 2003/09/15 半導體雷射講義-3 / 國立彰化師範大學物理系所暨光電研究所 / 郭艷光

Confined State Energy as a Function of Lz for GaAs/Al0.2Ga0.8As The region of band gap is not shown in this figure. 2003/09/15 半導體雷射講義-3 / 國立彰化師範大學物理系所暨光電研究所 / 郭艷光

Quantum Size Effect on Density of States Previously, by assuming that all dimensions were huge compared to the deBroglie wavelength, we derived the density of states for a bulk semiconductor material: When the dimension is comparable to the deBroglie wavelength, the quantum size effect (QSE) becomes easily observable and the density of states changes to reflect the quantization of momentum perpendicular to the thin layer. It can be shown that the density of states is a constant independent of energy provided E is larger than the first allowed state E1, which in turn must be larger than the normal band edge of the semiconductor. Hence by choosing the the dimension of the quantum well Lz, one can “design” the energy state and thus “engineer” the band gap. Similar quantum effects occur in the valance band. Since it has both light hole (lh) and heavy hole (hh) (i.e., different effective masses) the positions of the subbands are also different. Transitions can occur between an electron state in the conduction band to either a light hole or a heavy hole state in the valance band. 2003/09/15 半導體雷射講義-3 / 國立彰化師範大學物理系所暨光電研究所 / 郭艷光

Allowed Momentum Vectors in a Thin Semiconductor 2003/09/15 半導體雷射講義-3 / 國立彰化師範大學物理系所暨光電研究所 / 郭艷光

Density of States in a Quantum Well of Thickness Lz 2003/09/15 半導體雷射講義-3 / 國立彰化師範大學物理系所暨光電研究所 / 郭艷光

Density of States for Different Thickness Lz 2003/09/15 半導體雷射講義-3 / 國立彰化師範大學物理系所暨光電研究所 / 郭艷光

Strained Quantum-Well Lasers Quantum-well lasers have also been fabricated using an active layer whose lattice constant differs slightly from that of the substrate and cladding layers. Such lasers are known as strained quantum-well lasers. The strained quantum-well lasers show many desirable properties such as (i) a very low threshold current density and (ii) a lower line width both under continuous wave (CW) operation and under modulation (pulse operation). The origin of the improved device performance lies in the band-structure changes induced by the mismatch-induced strain. The figure shown in the next page shows the band structure of a semiconductor under compressive and tensile strain. Strain splits the heavy-hole and the light-hole valance bands at the G point of the Brillouin zone where the band gap is minimum in direct band gap semiconductors. 2003/09/15 半導體雷射講義-3 / 國立彰化師範大學物理系所暨光電研究所 / 郭艷光

Band Structure of a Direct Band-Gap Semiconductor Under Stress 2003/09/15 半導體雷射講義-3 / 國立彰化師範大學物理系所暨光電研究所 / 郭艷光

Vertical-Cavity Surface-Emitting Laser (VCSEL) The major difference between a vertical-cavity surface-emitting laser (VCSEL) and an edge-emitting laser (EEL) lies in the fact that a VCSEL emits light in the direction along the axis of crystal growth. The VCSELs have symmetrical laser beams that have small divergent angles. Hence, when compared to the EEL, the light emitted by a VCSEL may be coupled into an optical fiber more effectively. VCSELs are of advantage in the application of 2D arrays for communication. There is no need for the VCSEL wafers to be cleaved and coated for device performance testing, which saves a lot of time in device characterization. Light emitting diodes (LED) have been used in some short-distance optical fiber communication systems. If the LED light source were replaced by a VCSEL, the operating distance and data transmission rate would be greatly enhanced. Since the packaging for both LED and VCSEL are almost identical, the substitution of a LED by a VCSEL in an optical fiber communication system is very cost effective. 2003/09/15 半導體雷射講義-3 / 國立彰化師範大學物理系所暨光電研究所 / 郭艷光

Schematic Cross Section of a Surface-Emitting Laser 2003/09/15 半導體雷射講義-3 / 國立彰化師範大學物理系所暨光電研究所 / 郭艷光

Surface-Emitting Lasers with Distributed Bragg Reflectors (High-resistance region) (High-reflection mirror) (R < 1.0)  Laser Cavity (Laser power << 10 mW) p-spacer n-spacer Quantum-well region (R  1.0) CONTACT (for externally applied driving current) 2003/09/15 半導體雷射講義-3 / 國立彰化師範大學物理系所暨光電研究所 / 郭艷光

Reflectivity as a Function of the Number of DBR Pairs Pair number   R  n (= n1- n2)   R  2003/09/15 半導體雷射講義-3 / 國立彰化師範大學物理系所暨光電研究所 / 郭艷光

Structures of GaAs-AlGaAs Surface-Emitting Lasers 2003/09/15 半導體雷射講義-3 / 國立彰化師範大學物理系所暨光電研究所 / 郭艷光

InGaAs-GaAs SEL Structures with Transparent Substrates 2003/09/15 半導體雷射講義-3 / 國立彰化師範大學物理系所暨光電研究所 / 郭艷光

Multiple Interference of a Single-Layer Thin Film The reflectivity is maximum when where m is an odd integer. 2003/09/15 半導體雷射講義-3 / 國立彰化師範大學物理系所暨光電研究所 / 郭艷光

Schematic of a Bottom Emitting VCSEL Design 2003/09/15 半導體雷射講義-3 / 國立彰化師範大學物理系所暨光電研究所 / 郭艷光

Reflectivity Spectrum of a 20-Pair AlAs/GaAs DBR 0.98 mm 2003/09/15 半導體雷射講義-3 / 國立彰化師範大學物理系所暨光電研究所 / 郭艷光

Refractive Index Dispersion for AlGaInP, AlAs and GaAs 2003/09/15 半導體雷射講義-3 / 國立彰化師範大學物理系所暨光電研究所 / 郭艷光

Semiconductor DBR Mirrors Used in AlGaInP LEDs (Absorptive) 2003/09/15 半導體雷射講義-3 / 國立彰化師範大學物理系所暨光電研究所 / 郭艷光

Reflectivity Spectra for Transparent and Lossy DBRs Transparent DBR Reflectivity can never approach to 1.0. Lossy DBR 2003/09/15 半導體雷射講義-3 / 國立彰化師範大學物理系所暨光電研究所 / 郭艷光

850-nm VCSEL 2003/09/15 半導體雷射講義-3 / 國立彰化師範大學物理系所暨光電研究所 / 郭艷光