每周三交作业,作业成绩占总成绩的15%; 平时不定期的进行小测验,占总成绩的 15%;

Slides:



Advertisements
Similar presentations
Chapter 2 Combinatorial Analysis 主講人 : 虞台文. Content Basic Procedure for Probability Calculation Counting – Ordered Samples with Replacement – Ordered.
Advertisements

仪 容. 一、化妆的技巧 眼部的化妆 唇部化妆 眉部化妆 鼻部化妆 根据脸型化妆 根据脸型选发型.
說 劍 《莊子‧雜篇》─ 第 一 組 賴泊錞 謝孟儒 張維真 羅苡芸
总 复 习 四则运算 位置与方向 运算定律与简便计算 小数和意义和性质 小数和加法和减法 三角形 统计.
德 国 鼓 励 生 育 的 宣 传 画.
第四章 组合逻辑电路 第 四 章 组 合 逻 辑 电 路.
-CHINESE TIME (中文时间): Free Response idea: 你周末做了什么?
我们会赞叹生命之花的绚丽和多姿,也会歌颂生命之树的烂漫和青翠,但是生命是如此脆弱……
限时综合强化训练 限时综合强化训练.
了解太平天国运动的主要史实,认识农民起义在民主革命时期的作用与局限性。
B F C D G E B E A 下图是沿20°经线所作的地形剖面示意图
第四章 时间序列的分析 本章教学目的:①了解从数量方面研究社会经济现象发展变化过程和发展趋势是统计分析的一种重要方法;②掌握时间数列编制的基本要求;③理解和掌握水平速度两方面指标的计算及运用④理解和掌握长期趋势分析和预测的方法。 本章教学重点:现象发展的水平指标和速度指标。 本章教学难点:现象变动的趋势分析。
“08高考化学学业水平(必修科目)测试的命题和教学对策研究”
第1节 光的干涉 (第2课时).
群組未知 水蜜桃每4個裝一盒,爸爸買了5盒,一共買了幾個水蜜桃? 爸爸想把20個水蜜桃平分給他的5個朋友,每個朋友可以得到幾個水蜜桃?
勾股定理 说课人:钱丹.
Chapter 5 Relational Algebra
Minimum Spanning Trees
! 温故知新 上下文无关文法 最左推导 最右推导 自上而下 自下而上 句柄 归约 移进-归约冲突 移进-归约分析 递归下降预测分析
Digital Terrain Modeling
Chapter 4 歸納(Induction)與遞迴(Recursion)
微積分網路教學課程 應用統計學系 周 章.
課程名稱:資料庫系統 授課老師:李春雄 博士
樹狀結構 陳怡芬 2018/11/16 北一女中資訊專題研究.
非線性規劃 Nonlinear Programming
Chapter 6 Graph Chang Chi-Chung
第二章 共轴球面系统的物像关系 Chapter 2: Object-image relations of coaxial spheric system.
Properties of Continuous probability distributions
Sampling Theory and Some Important Sampling Distributions
Chapter 6 Advanced Counting Techniques
第 二 章 逻 辑 代 数 基 础.
第4章(2) 空间数据库 —关系数据库 北京建筑工程学院 王文宇.
如何寫工程計畫書 臺北市童軍會考驗委員會 高級考驗營 版.
离散数学─逻辑和证明 南京大学计算机科学与技术系
机器人学基础 第四章 机器人动力学 Fundamentals of Robotics Ch.4 Manipulator Dynamics
本章大綱 2.1 The Limit of a Function函數的極限 2.2 Limit Laws極限的性質
子博弈完美Nash均衡 我们知道,一个博弈可以有多于一个的Nash均衡。在某些情况下,我们可以按照“子博弈完美”的要求,把不符合这个要求的均衡去掉。 扩展型博弈G的一部分g叫做一个子博弈,如果g包含某个节点和它所有的后继点,并且一个G的信息集或者和g不相交,或者整个含于g。 一个Nash均衡称为子博弈完美的,如果它在每.
人教版数学四年级(下) 乘法分配律 单击页面即可演示.
Chapter 2 密碼基礎數學I:模數算數、同餘 與矩陣.
第一章.
Chapter 2 Basic Concepts in Graph Theory
Single’s Day.
Version Control System Based DSNs
Dept. of Information Management OCIT February, 2002
Chapter 5 Attributes of Output Primitives (图元的属性)
集合的概念和性质,以及集合之间的运算 集合{所有课程全体}和集合{所有教室}这两个集合之间就存在着某种联系。
教学建议 学习目标 § 6.1 矩阵的概念 § 6.2 矩阵运算 § 6.3 矩阵的初等行变换与矩阵的秩 § 6.4 线性方程组的消元解法
102-2金融法規(2~4) ~03..
大綱:整數的加法 整數的減法 蘇奕君 台灣數位學習科技股份有限公司
第四章 二元关系 2019/5/7.
线段 射线 直线.
§5.6 平面向量的数量积及运算律 南海中学数学组 周福隽.
第六章 模糊数学基础.
Chapter 7 Relations (關係)
赵才荣 同济大学,电子与信息工程学院,智信馆410室
计算机问题求解 – 论题 图的连通度 2018年11月13日.
第一章 集合论 集合是最基本的数学概念,没有定义 集合是所有数学的基础 两种集合论 朴素集合论:直观描述集合的概念,有悖论
第4讲 关系的概念与运算 重点内容: 1.关系的定义. 2.关系的运算,特别是关系的复合运算..
概率论与数理统计 第1章 随机事件与概率.
Boolean Algebra and Logic Simplification
5. Combinational Logic Analysis
分配律 ~ 觀念 15 × 15 × + 15 × 乘法公式 蘇德宙 老師 台灣數位學習科技股份有限公司
美丽的旋转.
知识点5---向量组的最大无关组 1. 最大线性无关组的定义 2. 向量组秩的定义及求法 向量组的秩和对应矩阵秩的关系 3.
句子成分的省略(3).
Graph 1 Michael Tsai 2012/4/24 連載: 學生上課睡覺姿勢大全
第二章 經濟模型.
计算机问题求解---论题3-12 图中的匹配与因子分解
Presentation transcript:

每周三交作业,作业成绩占总成绩的15%; 平时不定期的进行小测验,占总成绩的 15%; 期中考试成绩占总成绩的20%;期终考试成绩占总成绩的50% zhym@fudan.edu.cn 张宓 13212010027@fudan.edu.cn BBS id:abchjsabc 软件楼1039 杨侃 10302010007@fudan.edu.cn liy@fudan.edu.cn 李弋

A∪B=A∪C ⇏ B=C cancellation law 。 Example:A={1,2,3},B={3,4,5},C={4,5}, BC, But A∪B=A∪C={1,2,3,4,5} Example: A={1,2,3},B={3,4,5},C={3},BC, But A∩B=A∩C={3} A-B=A-C ⇏B=C cancellation law :symmetric difference

The symmetric difference of A and B, write AB, is the set of all elements that are in A or B, but are not in both A and B, i.e. AB=(A∪B)-(A∩B) 。 (A∪B)-(A∩B)=(A-B)∪(B-A)

Theorem 1.4: if AB=AC, then B=C Distributive laws and De Morgan’s laws: B∩(A1∪A2∪…∪An)=(B∩A1)∪(B∩A2)∪…∪(B∩An) B∪(A1∩A2∩…∩An)=(B∪A1)∩(B∪A2)∩…∩(B∪An)

Chapter 2 Relations Definition 2.1: An order pair (a,b) is a listing of the objects a and b in a prescribed order, with a appearing first and b appearing second. Two order pairs (a,b) and (c, d) are equal if only if a=c and b=d. {a,b}={b,a}, order pairs: (a,b)(b,a) unless a=b. (a,a)

Definition 2.2: The ordered n-tuple (a1,a2,…,an) is the ordered collection that has a1 as its first element, a2 as its second element,…, and an as its nth element.Two ordered n-tuples are equal is only if each corresponding pair of their elements ia equal, i.e. (a1,a2,…,an)=(b1,b2,…,bn) if only if ai=bi, for i=1,2,…,n.

Definition 2. 3: Let A and B be two sets Definition 2.3: Let A and B be two sets. The Cartesian product of A and B, denoted by A×B, is the set of all ordered pairs ( a,b) where aA and bB. Hence A×B={(a, b)| aA and bB} Example: Let A={1,2}, B={x,y},C={a,b,c}. A×B={(1,x),(1,y),(2,x),(2,y)}; B×A={(x,1),(x,2),(y,1),(y,2)}; B×AA×B commutative laws ×

A×C={(1,a),(1,b),(1,c),(2,a),(2,b),(2,c)}; A×A={(1,1),(1,2),(2,1),(2,2)}。 A×=×A= Definition 2.4: Let A1,A2,…An be sets. The Cartesian product of A1,A2,…An, denoted by A1×A2×…×An, is the set of all ordered n-tuples (a1,a2,…,an) where aiAi for i=1,2,…n. Hence A1×A2×…×An={(a1,a2,…,an)|aiAi,i=1,2,…,n}.

Example:A×B×C={(1,x,a),(1,x,b),(1,x,c),(1,y,a), (1,y,b), (1,y,c),(2,x,a),(2,x,b),(2,x,c),(2,y,a),(2,y,b), (2,y,c)}。 If Ai=A for i=1,2,…,n, then A1×A2×…×An by An. Example:Let A represent the set of all students at an university, and let B represent the set of all course at the university. What is the Cartesian product of A×B? The Cartesian product of A×B consists of all the ordered pairs of the form (a,b), where a is a student at the university and b is a course offered at the university. The set A×B can be used to represent all possible enrollments of students in courses at the university

students a,b,c, courses:x,y,z,w (a,y),(a,w),(b,x),(b,y),(b,w),(c,w) R={(a,y),(a,w),(b,x),(b,y),(b,w)} RA×B, i.e. R is a subset of A×B relation

2.2 Binary relations Definition 2.5: Let A and B be sets. A binary relation from A to B is a subset of A×B. A relation on A is a relation from A to A. If (a,b)R, we say that a is related to b by R, we also write a R b. If (a,b)R , we say that a is not related to b by R, we also write a ℟ b. we say that empty set is an empty relation.

Definition 2. 6: Let R be a relation from A to B Definition 2.6: Let R be a relation from A to B. The domain of R, denoted by Dom(R), is the set of elements in A that are related to some element in B. The range of R, denoted by Ran(R), is the set of elements in B that are related to some element in A. Dom(R)A,Ran(R)B。

Example: A={1,3,5,7},B={0,2,4,6}, R={(a,b)|a<b, where aA and bB} Hence R={(1,2),(1,4),(1,6),(3,4),(3,6),(5,6)} Dom(R)={1,3,5}, Ran(R)={2,4,6} (3,4)R, Because 4≮3, so (4,3)R Table R={(1,2),(1,4),(1,6),(3,4), (3,6),(5,6)}

A={1,2,3,4},R={(a,b)| 3|(a-b), where a and bA} Dom R=Ran R=A。 congruence mod 3 congruence mod r {(a,b)| r|(a-b) where a and bZ, and rZ+}

Definition 2. 7:Let A1,A2,…An be sets Definition 2.7:Let A1,A2,…An be sets. An n-ary relation on these sets is a subset of A1×A2×…×An.

2.3 Properties of relations Definition 2.8: A relation R on a set A is reflexive if (a,a)R for all aA. A relation R on a set A is irreflexive if (a,a)R for every aA. A={1,2,3,4} R1={(1,1),(2,2),(3,3)} ? R2={(1,1),(1,2),(2,2),(3,3),(4,4)} ? Let A be a nonempty set. The empty relation A×A is not reflexive since (a,a) for all aA. However  is irreflexive

Definition 2.9: A relation R on a set A is symmetric if whenever a R b, then b R a. A relation R on a set A is asymmetric if whenever a R b, then b℟a. A relation R on a set A is antisymmetric if whenever a R b, then b℟a unless a=b. If R is antisymmetric, then a ℟ b or b ℟ a when ab. A={1,2,3,4} S1={(1,2),(2,1),(1,3),(3,1)}? S2={(1,2),(2,1),(1,3)}? S3={(1,2),(2,1),(3,3)} ?

A relation is not symmetric, and is also not antisymmetric S4={(1,2),(1,3),(2,3)} antisymmetric, asymmetric S5={(1,1),(1,2),(1,3),(2,3)} antisymmetric, is not asymmetric S6={(1,1),(2,2)} antisymmetric, symmetric, is not asymmetric A relation is symmetric, and is also antisymmetric

Definition 2.10: A relation R on set A is transitive if whenever a R b and b R c, then a R c. A relation R on set A is not transitive if there exist a,b, and c in A so that a R b and b R c, but a ℟ c. If such a, b, and c do not exist, then R is transitive T1={(1,2),(1,3)} transitive T2={(1,1)} transitive T3={(1,2),(2,3),(1,3)} transitive T4={(1,2),(2,3),(1,3),(2,1),(1,1)} ?

Example:Let R be a nonempty relation on a set A Example:Let R be a nonempty relation on a set A. Suppose that R is symmetric and irreflexive. Show that R is not transitive. Proof: Suppose R is transitive. Matrix or pictorial represented

Definition 2.11: Let R be a relation from A={a1,a2,…,am} to B={b1,b2,…,bn}. The relation can be represented by the matrix MR=(mi,j)m×n, where mi,j=1? ai is related bj mi,j=0? ai is not related bj

Example: A={1,2,3,4}, R={(1,1),(2,2),(3,3), (4,4),(1,4),(4,1)}, Matrix: Example:A={2,3,4},B={1,3,5,7}, < R={(2,3),(2,5), (2,7),(3,5),(3,7),(4,5),(4,7)}, Matrix: Let R be a relation on set A. R is reflexive if all the elements on the main diagonal of MR are equal to 1 R is irreflexive if all the elements on the main diagonal of MR are equal to 0 R is symmetric if MR is a symmetric matrix. R is antisymmetric if mij=1 with ij, then mji=0

Directed graphs, or Digraphs。 Definition 2.12: Let R be a relation on A={ a1,a2,…,an}. Draw a small circle (point) for each element of A and label the circle with the corresponding element of A. These circles are called vertices. Draw an arrow, called an edge, from vertex ai to vertex aj if only if ai R aj . An edge of the form (a,a) is represented using an arc from the vertex a back to itself. Such an edge is called a loop.

Example: LetA={1, 2, 3, 4, 5}, R={(1,1),(2,2),(3,3),(4,4), (5,5),(1,4),(4,1),(2,5),(5,2)}, digraph

2.4 Operations on Relations R1∪R2 R1∩R2 R1-R2

1.Inverse relation Definition 2.13: Let R be a relation from A to B. The inverse relation of R is a relation from B to A, we write R-1, defined by R-1= {(b,a)|(a,b)R}

Theorem 2.1:Let R,R1, and R2 be relation from A to B. Then (2)(R1∪R2)-1=R1-1∪R2-1; (3)(R1∩R2)-1=R1-1∩R2-1; (4)(A×B)-1=B×A; (5)-1=; (7)(R1-R2)-1=R1-1-R2-1 (8)If R1R2 then R1-1R2-1

Theorem 2. 2:Let R be a relation on A Theorem 2.2:Let R be a relation on A. Then R is symmetric if only if R=R-1. Proof: (1)If R is symmetric, then R=R-1。 RR-1 and R-1R。 (2)If R=R-1, then R is symmetric For any (a,b)R, (b,a)?R

Exercise: P13 42 43 47 48 P126 17,37 P134 24, 26, P146 1,2,12, 21,31 P167 1,8,9,11