Cherenkov radiation 带电粒子在介质中运动产生诱导电流,当粒子速度超过介质内光速时,

Slides:



Advertisements
Similar presentations
1 Field and Wave Electromagnetics Edited by David K. Cheng.
Advertisements

大型仪器介绍课程 小角X射线散射原理与应用 庄 文 昌 指导老师: 陈 晓.
高中英文第一冊 第一單元 重補修用.
電偶極如果突然形成或產生變化,遠處的電磁場如何被影響?
考慮電偶極突然形成或產生變化 ? + - 電偶極突然出現等於電荷加速 電偶極突然不只產生電場,電場的突然出現會感應出磁場!
史上最賣座動漫-海賊王 3/19/ 張依琳.
(复习课) 光学复习.
B型肝炎帶原之肝細胞癌患者接受肝動脈栓塞治療後血液中DNA之定量分析
(interference of light)
3.1 集中趋势的度量 3.2 离散程度的度量 3.3 偏态与峰态的度量
光的特性.
沐阳老年社区.
模式识别 Pattern Recognition
Differential Equations (DE)
D. Halliday, R. Resnick, and J. Walker
Ch3. Maxwell’s Equations in Differential Form
99新課綱內容: 量子現象 1. 光電效應 1-1 黑體輻射 1-2 愛因斯坦 光電效應 1-4 光電效應的應用
§5.6 Hole-Burning and The Lamb Dip in Doppler- Broadened Gas Laser
Sampling Theory and Some Important Sampling Distributions
11 電磁 IV How did the electric guitar revolutionize rock?
第八章 Illumination and Shading
Ch4. Fields And Waves In Material Media
21. Gauss’s Law 高斯定律 Electric Field Lines 電場線
Short Version : 6. Work, Energy & Power 短版: 6. 功,能和功率
機械波 Mechanical Waves Mechanical wave is a disturbance that travels through some material or substance called the medium for wave. Transverse wave is the.
干涉與繞射(I) 有哪些現象是和『干涉』『繞射』有關? 為什麼有的叫干涉?有的叫繞射?如何區分? 同調性 coherent.
普通物理 General Physics 30 - Inductance
Fundamentals of Physics 8/e 29 - Current-Produced Magnetic Field
普通物理 General Physics 29 - Current-Produced Magnetic Field
普通物理 General Physics 31 - Alternating Fields and Current
Fundamentals of Physics 8/e 31 - Alternating Fields and Current
Short Version : 29. Maxwell’s Equations & EM Waves 短版 : 29. 麥克斯韋方程和電磁波
統計量數 集中趨勢量數 離散趨勢量數 相對位置量數 分配形態量數.
普通物理 General Physics 22 - Finding the Electric Field-I
Chapter 8 Thermodynamics of High-Speed Gas Flow (第8章 气体和蒸气的流动)
辐射带 1958年:探险者一号、探险者三号和苏联的卫星三号等科学卫星被发射后科学家出乎意料地发现了地球周围强烈的、被地磁场束缚的范艾伦辐射带(内辐射带)。 这个辐射带由能量在10至100MeV的质子组成,这些质子是由于宇宙线与地球大气上层撞击导致的中子衰变产生的,其中心在赤道离地球中心约1.5地球半径。
2012清大電資院學士班 「頂尖企業暑期實習」 經驗分享心得報告 實習企業:工業技術研究院 電光所 實習學生:電資院學士班  呂軒豪.
Neutron Stars and Black Holes 中子星和黑洞
第2章 實體層基礎.
Energy, temperature and hea
Quark Polarization in Relativistic Heavy Ion Collisions
句子成分的省略(1).
Short Version : 21. Gauss’s Law 短版 : 21. 高斯定律
Universal Law of Electromagnetic Phenomenon
普通物理 General Physics 21 - Coulomb's Law
校園地震預警系統的建置與應用 林沛暘.
行星運動 人類對天體的運行一直充滿著好奇與幻想,各式各樣的傳說與理論自古即流傳於各地。在這些論述中,不乏各式神鬼傳說與命運註解,也包含了許多爭論不休的學術觀點。雖然這些形而上的虛幻傳奇仍然流傳於坊間,但是科學上的爭執卻因牛頓重力理論(law of gravitation)的出現而大致底定。
Mechanics Exercise Class Ⅰ
宇宙磁场的起源 郭宗宽 2016两岸粒子物理及宇宙学研讨会
脉冲星磁层中波的传播效应 王陈 国家天文台 2009年7月 2009年脉冲星暑期天文学校.
實驗 八 駐波,梅耳得實驗 Standing Wave, Melde’s Experiment
Inter-band calibration for atmosphere
實 驗 1 : 電 場(Electric Field) (課本實驗14)
形容词短语(续).
日落西沉的景色真奇妙, 日旭東升也真奇妙; 但我心中最希奇的大奇妙, 就是奇妙的神愛我。
日落西沉的景色真奇妙, 日旭東升也真奇妙; 但我心中最希奇的大奇妙, 就是奇妙的神愛我。
Q & A.
波與粒子 波的類型 機械波 電磁波 物質波:matter
Nucleon EM form factors in a quark-gluon core model
磁共振原理的临床应用.
Mechanics Exercise Class Ⅱ
Q1: How do we determine the crystal structure?
電流的瞬間變化,如何影響遠處的磁場(或電場)?
電偶極形成,如何影響遠處的磁場(或電場)?
X-ray sources X-rays have the proper wavelength (in the Ångström range, ~10-10 m) to be scattered by the electron cloud of an atom of comparable size (we.
高斯定律 Gauss’s Law.
句子成分的省略(3).
Electromagnetic properties of light nuclei
Principle and application of optical information technology
Presentation transcript:

Cherenkov radiation 带电粒子在介质中运动产生诱导电流,当粒子速度超过介质内光速时, Cherenkov1934,Frank &Tam 1937 1958 Nobel prize 真空中匀速直线运动带电粒子不辐射? 带电粒子在介质中运动产生诱导电流,当粒子速度超过介质内光速时, 激发次波与原粒子电磁场干涉,可以形成辐射场。 方向性好:

介质中运动电荷产生的场可用推迟势(介质光速)表示

特定频率分量 讨论

Angular distribution 单位频率间隔 单位路程辐射能量 由典型的色散曲线(show)知 Cherenkov 辐射只包括某一频段

Dispersion (p309) 当电磁波入射到介质内时,由束缚电子散射的次波会叠加成介质内传播的电磁波。宏观电磁现象由极化强度 P 和 磁化强度 M 决定。 束缚电子(谐振子)散射 散射波

平均能流密度 散射截面

稀薄气体近似:忽略分子间相互作用, 单位体积电子数N,利用束缚电子散射结果 通常测定的折射率即为实部 n

考虑到多个固有频率(激发态),分支为 fi

Scattering and Diffraction Involved scales: Wavelength and size of target Lowest order induced EM multipoles oscillate and radiate energy Need more systematic treatment with multipoles Semi-geometric methods

The incident fields are Induced dipole moments (p and m) radiate energy in all directions. The scattered (radiated) fields (in the direction n) are (9.19,10.2)

The differential cross section = power radiated per unit solid angle, per unit incident flux Rayleigh’s law: universal characteristic of the of the long wave length scattering by any finite system

Scattering by a small dielectric sphere of radius a The electric dipole moment is (4.56) at p158) So the differential cross section

The incident wave is unpolarized the parallel and perpendicular components are The polarization, differential and total scattering cross section are (see Fig 10.2 at p459)

Scattering by a small perfectly conducting sphere of radius a The electric dipole moment is (see section 2.5 at p62) So the differential cross section

The differential cross section and polarization The cross section has a strong backward peaking caused by electric dipole -- magnetic dipole interference. The polarization reaches 1 at 60 degrees and is positive through the whole angular range.

Perturbation theory- the medium is supposed to have small changes in its response to applied fields The wave equation for D With harmonic time variation, the above equation becomes A formal solution is

The scattering amplitude The differential cross section (a formal solution)

Born approximation The unperturbed fields so Suppose that the scattering region is a uniform dielectric sphere of radius a, is constant inside a sphere and vanishes outside

Perform the integral At low frequencies or in the forward direction

Blue sky If individual molecules are assumed to possess dipole moments where is molecular polarizability (p161) The effective variation in dielectric constant is The differential cross section is

The total cross section For dilute gases The total cross section In traversing a thickness dx of the gases, the fractional loss of flux is so the beam intensity is with absorption or attenuation coefficient

Discussion Light received away from the incident beam is more heavily weighted in high-frequency (blue) components than the spectral distribution of the incident beam Transmitted beam becomes increasingly red in its spectral composition, as well as diminishing in overall intensity The blueness of the sky, the redness of the sunset, the waneness of the winter sun, and the ease of sunburning at midday in summer Relative intensities: Zenith Sunrise-Sunset Red (6500A) 0.96 0.21 Green (5200A) 0.90 0.024 Violet (4100A) 0.76 0.000065