第六章 分支限界法 理解分支限界法的剪枝搜索策略。 掌握分支限界法的算法框架 队列式(FIFO)分支限界法 优先队列式分支限界法.

Slides:



Advertisements
Similar presentations
Deeper 招商局工业集团有限公司 China Merchants Industry Holdings Co., Ltd. “ 招商局工业杯 ” 棋牌赛赛程、赛制和抽签安排 2012 年 6 月 4 日.
Advertisements

多喝白開水, 健康水噹噹 中原食品營養師 張瑋真 前 言 小明今年九歲, 就讀中原國小, 他每天早上都會去 學校附近的早餐店, 買早餐來吃, 他通常都會吃 三明治或蛋餅, 而且都會搭配一杯奶茶或是紅茶, 才會滿足的去學校上學。 中午放學回家後, 也會在路上的便利商店, 買一罐 運動飲料或是綠茶解渴。
While 迴圈 - 不知重複執行次數
翻譯技巧解說 例文 授課教師:何資宜. 一、加譯 「おしん」の視 聴率は、最高の時が 62.9 %に達した。ク ロジロが出てくる 「南極物語」は、配 給収入が 52 億円を超 えて、記録を更新し た。 《阿信》的收視率最 高時曾達 62.9% 。此 外,以兩隻小狗太郎 次郎為主角的《南極 物語》,票房收入也.
电子商务专业人才培养方案 五年制高职. 一、招生对象、学制与办学层次  (一)招生对象:初中毕业生  (二)学制:五年  (三)办学层次:专科.
牛熊證簡介.
第一节 人口的数量变化.
品德教育讀書會分組報告 第三組 組員:董健毅老師、黃琡雯老師、方永強老師、 李淑瑜老師、郭德義老師、邱美鈴老師、 陳月鈴老師、曾婷瑜老師
人教版语文 三年级下册 语文园地四 作者:佚名 来源:网络.
司法体制改革与律师执业前景瞻望 黄太云
品读论语之四---- 巧言令色非君子.
動畫與遊戲設計 Data structure and artificial intelligent
迴圈 迴圈基本觀念 while迴圈 do 迴圈 for迴圈 巢狀迴圈 迴圈設計注意事項 其他控制指令 迴圈與選擇的組合.
苟利国家生死以, 岂因祸福避趋之。 ----禁毒英雄,一生为公 --林则徐.
过小孤山大孤山 陆游.
陈情表 李密 龙江一中高二语文备课组.
林森國小一年8班班親會 葉宛婷老師 103年9月19日 晚上7:00-8:30 地點:108教室.
国王赏麦的故事.
第5章 回溯法 欢迎辞.
秘密/蜜花園 台灣女性散文的繁麗圖景 楊 翠.
C#程序设计案例教程 第3章 程 序 结 构.
AI人工智慧報告 黑白棋 班級:資工四乙 學號:498G0009 姓名:盧冠妤.
指導教授:古錦松 分享同學: 蔡斗溍、陳姿云 陳俊仰、陳國睿(助教)
项目2-1 店铺的定位.
第六章 分支限界法.
孟子名言 1. 幼吾幼,以及人之幼。 2.天时不如地利, 。 3. ,威武不能屈。 4.得道者多助, 。 5.穷则独善其身, 。 6.
寡人之于国也 《孟子》.
如何查財產(2/6) EX:利息明細提醒您於金融機構有存款;營利(股利)明細提醒您有買股票。
第六章 中间代码生成 赵建华 南京大学计算机系.
看图找关系.
第 5 章 流程控制 (一): 條件分支.
第5章 回溯法 “通用的解题法” 欢迎辞.
数据结构——树和二叉树 1/96.
对程序进行推理的逻辑 计算机科学导论第二讲
腸病毒防治宣導 主講者 陳玟吟護理師.
腦癇症.
第二章 JAVA语言基础.
Tree(樹) 什麼是「樹」? 「樹」的範例 「樹」的定義 「樹」的表示法.
佇列 (Queue).
Chapter8 Binary and Other Trees
·线性表的定义及ADT ·线性表的顺序存储结构 ·线性表的链接存储结构 · 单向循环链表 · 双链表、双向循环链表 · 一元多项式的加法
授课老师:龚涛 信息科学与技术学院 2018年3月 教材: 《Visual C++程序员成长攻略》 《C++ Builder程序员成长攻略》
6.6 Huffman树及其应用 王 玲.
第三章 栈和队列.
計數式重複敘述 for 迴圈 P
计算机算法设计与分析(第3版) 王晓东 编著 电子工业出版社.
Chapter6 队列(Queues) The Abstract Data Type
Tree & Binary Tree.
主讲人: 吕敏 { } Spring 2016 ,USTC 算法基础 主讲人: 吕敏 { } Spring 2016 ,USTC.
鄧姚文 資料結構 第五章:遞迴 鄧姚文
常宝宝 北京大学计算机科学与技术系 数据结构(三) 常宝宝 北京大学计算机科学与技术系
物理實驗水火箭活動 水火箭製作.
程式結構&語法.
山东师范大学信息科学与工程学院软件工程研究所 徐连诚 2006年11月20日
第5章 回溯法 欢迎辞.
山东师范大学信息科学与工程学院软件工程研究所 徐连诚 2006年12月4日
程式的時間與空間 Time and Space in Programming
C++语言程序设计教程 第2章 数据类型与表达式 第2章 数据类型与表达式 制作人:杨进才 沈显君.
第二章 Java语法基础.
第7章 概率算法 欢迎辞.
第八节 算术运算符和算术表达式.
#include <iostream.h>
第二章 Java基本语法 讲师:复凡.
20 谈礼貌 合肥市螺岗小学 赵勋.
第1章 数据结构基础概论 本章主要介绍以下内容 数据结构研究的主要内容 数据结构中涉及的基本概念 算法的概念、描述方法以及评价标准.
主讲人: 吕敏 { } Spring 2016,USTC 算法基础 主讲人: 吕敏 { } Spring 2016,USTC.
第2章 Java语言基础.
C#快速導讀 流程控制.
判斷(選擇性敘述) if if else else if 條件運算子.
第六章 直接成本法.
Presentation transcript:

第六章 分支限界法 理解分支限界法的剪枝搜索策略。 掌握分支限界法的算法框架 队列式(FIFO)分支限界法 优先队列式分支限界法

第五章 分支限界法 通过应用范例学习分支限界法的设计策略。 单源最短路径问题 装载问题; 布线问题 0-1背包问题; 最大团问题; 旅行售货员问题 电路板排列问题 批处理作业调度问题

分支限界法的基本思想 分支限界法与回溯法 (1)求解目标:回溯法的求解目标是找出解空间树中满足约束条件的所有解,而分支限界法的求解目标则是找出满足约束条件的一个解,或是在满足约束条件的解中找出在某种意义下的最优解。 (2)搜索方式的不同: 回溯法以深度优先的方式搜索解空间树; 而分支限界法则以广度优先或以最小耗费优先的方式搜索解空间树。

分支限界法的基本思想 分支限界法常以广度优先或以最小耗费(最大效益)优先的方式搜索问题的解空间树。对已处理的各结点根据限界函数估算目标函数的可能取值,从中选取使目标函数取得极值(极大/极小)的结点优先进行广度优先搜索不断调整搜索方向,尽快找到解。 特点:限界函数常基于问题的目标函数,适用于求解最优化问题。

分支限界法的基本思想 在分支限界法中,每一个活结点只有一次机会成为扩展结点。活结点一旦成为扩展结点,就一次性产生其所有儿子结点。在这些儿子结点中,导致不可行解或导致非最优解的儿子结点被舍弃,其余儿子结点被加入活结点表中。 此后,从活结点表中取下一结点成为当前扩展结点,并重复上述结点扩展过程。这个过程一直持续到找到所需的解或活结点表为空时为止。

分支限界法的基本思想 常见的两种分支限界法 (1)队列式(FIFO)分支限界法 按照队列先进先出(FIFO)原则选取下一个结点为扩展结点。 (2)优先队列式分支限界法 按照优先队列中规定的优先级选取优先级最高的结点成为当前扩展结点。

解空间树的动态搜索 (1)回溯求解0/1背包问题,虽剪枝减少了搜索空间,但整个搜索按深度优先机械进行,是盲目搜索(不可预测本结点以下的结点进行的如何)。 (2)回溯求解TSP也是盲目的(虽有目标函数,也只有找到一个可行解后才有意义)

解空间树的动态搜索 分支限界法首先确定一个合理的限界函数,并根据限界函数确定目标函数的界[down, up]; 如果某孩子结点的目标函数值超出目标函数的界,则将其丢弃(从此结点生成的解不会比目前已得的更好),否则入待处理表。

0/1背包的分支限界法过程 1. 问题描述 容量w=10 物品 重(w) 价(v) 价/重(v/w) 1 4 40 10 2 7 42 6 1 4 40 10 2 7 42 6 3 5 25 5 4 3 12 4 贪心法的解(1,0,0,0),价值为40,可作为0/1背包的下界。

ub=V+(W-w)*(vi+1/wi+1) 0/1背包的分支限界法过程 2. 求解过程 上界ub可用最好情况来代替ub=w*(v1/w1)=10*10=100 目标函数的界[40, 100],一般解空间树中第i层的各结点,代表对物1~i的选择,可这样定限界函数: ub=V+(W-w)*(vi+1/wi+1) 可参考板书视图 剩下物品最大单位价值vi+1/wi+1的积 已装入价值 剩余容量

0/1背包的分支限界法过程 2. 总结 从0/1背包问题的搜索过程可看出:与回溯法相比,分支限界法可根据限界函数不断调整搜索方向,选择最可能得最优解的子树优先进行搜索找到问题的解。

分支限界法的设计思路 设求解最大化问题,解向量为X=(x1,…,xn),xi的取值范围为Si,|Si|=ri。在使用分支限界搜索问题的解空间树时,先根据限界函数估算目标函数的界[down, up],然后从根结点出发,扩展根结点的r1个孩子结点,从而构成分量x1的r1种可能的取值方式。 对这r1个孩子结点分别估算可能的目标函数bound(x1),其含义:以该结点为根的子树所有可能的取值不大于bound(x1),即: bound(x1)≥bound(x1,x2)≥…≥ bound(x1,…,xn)

分支限界法的设计思路 若某孩子结点的目标函数值超出目标函数的下界,则将该孩子结点丢弃;否则,将该孩子结点保存在待处理结点表PT中。 直到一个叶子结点时的可行解X=(x1,…,xn),及目标函数值bound(x1,…,xn)。

单源最短路径问题 1. 问题描述 下面以一个例子来说明单源最短路径问题:在下图所给的有向图G中,每一边都有一个非负边权。要求图G的从源顶点s到目标顶点t之间的最短路径。

单源最短路径问题 1. 问题描述 下图是用优先队列式分支限界法解有向图G的单源最短路径问题产生的解空间树。其中,每一个结点旁边的数字表示该结点所对应的当前路长。

单源最短路径问题 2. 算法思想 解单源最短路径问题的优先队列式分支限界法用一极小堆来存储活结点表。其优先级是结点所对应的当前路长。

单源最短路径问题 2. 算法思想 算法从图G的源顶点s和空优先队列开始。结点s被扩展后,它的儿子结点被依次插入堆中。此后,算法从堆中取出具有最小当前路长的结点作为当前扩展结点,并依次检查与当前扩展结点相邻的所有顶点。如果从当前扩展结点i到顶点j有边可达,且从源出发,途经顶点i再到顶点j的所相应的路径的长度小于当前最优路径长度,则将该顶点作为活结点插入到活结点优先队列中。 这个结点的扩展过程一直继续到活结点优先队列为空时为止。

单源最短路径问题 3. 剪枝策略 在算法扩展结点的过程中,一旦发现一个结点的下界不小于当前找到的最短路长,则算法剪去以该结点为根的子树。 在算法中,利用结点间的控制关系进行剪枝。从源顶点s出发,2条不同路径到达图G的同一顶点。由于两条路径的路长不同,因此可以将路长长的路径所对应的树中的结点为根的子树剪去。

单源最短路径问题 3. 剪枝策略 下图是用优先队列式分支限界法解有向图G的单源最短路径问题产生的解空间树的剪枝情况。 A优于B,B可剪枝 经过不同的路径到达相同的顶点 B A

顶点i和j间有边,且此路径长小于原先从源点到j的路径长 单源最短路径问题 while (true) { for (int j = 1; j <= n; j++) if ((c[E.i][j]<inf)&&(E.length+c[E.i][j]<dist[j])) {// 顶点i到顶点j可达,且满足控制约束 dist[j]=E.length+c[E.i][j]; prev[j]=E.i; // 加入活结点优先队列 MinHeapNode<Type> N; N.i=j; N.length=dist[j]; H.Insert(N);} try {H.DeleteMin(E);} // 取下一扩展结点 catch (OutOfBounds) {break;} // 优先队列空 }} 顶点i和j间有边,且此路径长小于原先从源点到j的路径长

单源最短路径问题 Dijakstra算法和分支限法在解决该问题的异同: Dijakstra算法:每一步的选择为当前步的最优,复杂度为O(n2)。 分支限算法:每一步的扩散为当前耗散度的最优。 队列式分支限界法的搜索解空间树的方式类似于解空间树的宽度优先搜索,不同的是队列式分支限界法不搜索以不可行结点(已经被判定不能导致可行解或不能导致最优解的结点)为根的子树。按照规则,这样的结点不被列入活结点表。 A->E->Q->M

单源最短路径问题 Dijakstra算法和分支限法在解决该问题的异同: 优先队列式分支限界法的搜索方式是根据活结点的优先级确定下一个扩展结点。结点的优先级常用一个与该结点有关的数值p来表示。最大优先队列规定p值较大的结点点的优先级较高。在算法实现时通常用一个最大堆来实现最大优先队列,体现最大效益优先的原则。类似地,最小优先队列规定p值较小的结点的优先级较高。在算法实现时,常用一个最小堆来实现,体现最小优先的原则。采用优先队列式分支定界算法解决具体问题时,应根据问题的特点选用最大优先或最小优先队列,确定各个结点点的p值。

装载问题 1. 问题描述 有一批共n个集装箱要装上2艘载重量分别为C1和C2的轮船,其中集装箱i的重量为Wi,且 容易证明:如果一个给定装载问题有解,则采用下面的策略可得到最优装载方案。 (1)首先将第一艘轮船尽可能装满; (2)将剩余的集装箱装上第二艘轮船。

装载问题 2. 队列式分支限界法 在算法的while循环中,首先检测当前扩展结点的左儿子结点是否为可行结点。如果是则将其加入到活结点队列中。然后将其右儿子结点加入到活结点队列中(右儿子结点一定是可行结点)。2个儿子结点都产生后,当前扩展结点被舍弃。

装载问题 2. 队列式分支限界法 活结点队列中的队首元素被取出作为当前扩展结点,由于队列中每一层结点之后都有一个尾部标记-1,故在取队首元素时,活结点队列一定不空。 当取出的元素是-1时,再判断当前队列是否为空。如果队列非空,则将尾部标记-1加入活结点队列,算法开始处理下一层的活结点。

装载问题 2. 队列式分支限界法 while (true) { // 检查左儿子结点 if (Ew + w[i] <= c) // x[i] = 1 判断是否可以装上船 EnQueue(Q, Ew + w[i], bestw, i, n); // 右儿子结点总是可行的 左孩子是选择,右孩子是不选,总有其它方案. EnQueue(Q, Ew, bestw, i, n); // x[i] = 0 Q.Delete(Ew); // 取下一扩展结点 if (Ew == -1) { // 同层结点尾部 if (Q.IsEmpty()) return bestw; Q.Add(-1); // 同层结点尾部标志 Q.Delete(Ew); // 取下一扩展结点 i++;} // 进入下一层 }

装载问题 3. 算法的改进 结点的左子树表示将此集装箱装上船,右子树表示不将此集装箱装上船。设bestw是当前最优解;ew是当前扩展结点所相应的重量;r是剩余集装箱的重量。则当ew+rbestw时,可将其右子树剪去,因为此时若要船装最多集装箱,就应该把此箱装上船。 另外,为了确保右子树成功剪枝,应该在算法每一次进入左子树的时候更新bestw的值。

装载问题 3. 算法的改进 右儿子剪枝 提前更新bestw // 检查左儿子结点 Type wt = Ew + w[i]; // 左儿子结点的重量 if (wt <= c) { // 可行结点 if (wt > bestw) bestw = wt; // 加入活结点队列 if (i < n) Q.Add(wt); } // 检查右儿子结点 if (Ew + r > bestw && i < n) Q.Add(Ew); // 可能含最优解 Q.Delete(Ew); // 取下一扩展结点

装载问题 4. 构造最优解 为了在算法结束后能方便地构造出与最优值相应的最优解,算法必须存储相应子集树中从活结点到根结点的路径。为此目的,可在每个结点处设置指向其父结点的指针,并设置左、右儿子标志。 class QNode {QNode *parent; // 指向父结点的指针 bool LChild; // 左儿子标志 Type weight; // 结点所相应的载重量

装载问题 4. 构造最优解 找到最优值后,可以根据parent回溯到根结点,找到最优解。 // 构造当前最优解 for (int j = n - 1; j > 0; j--) { bestx[j] = bestE->LChild; bestE = bestE->parent; }

装载问题 5. 优先队列式分支限界法 解装载问题的优先队列式分支限界法用最大优先队列存储活结点表。活结点x在优先队列中的优先级定义为从根结点到结点x的路径所相应的载重量再加上剩余集装箱的重量之和。 优先队列中优先级最大的活结点成为下一个扩展结点。以结点x为根的子树中所有结点相应的路径的载重量不超过它的优先级。子集树中叶结点所相应的载重量与其优先级相同。 在优先队列式分支限界法中,一旦有一个叶结点成为当前扩展结点,则可以断言该叶结点所相应的解即为最优解。此时可终止算法。

布线问题 1. 算法思想 布线问题:印刷电路板将布线区域划分成n×m个方格如图a所示。精确的电路布线问题要求确定连接方格a的中点到方格b的中点的最短布线方案。在布线时,电路只能沿直线或直角布线,如图b所示。为了避免线路相交,已布了线的方格做了封锁标记,其它线路不允穿过被封锁的方格。

布线问题 1. 算法思想 一个布线的例子:图中包含障碍。起始点为a,目标点为b。

布线问题 1. 算法思想 解此问题的队列式分支限界法从起始位置a开始将它作为第一个扩展结点。与该扩展结点相邻并且可达的方格成为可行结点被加入到活结点队列中,并且将这些方格标记为1,即从起始方格a到这些方格的距离为1。 接着,算法从活结点队列中取出队首结点作为下一个扩展结点,并将与当前扩展结点相邻且未标记过的方格标记为2,并存入活结点队列。这个过程一直继续到算法搜索到目标方格b或活结点队列为空时为止。即加入剪枝的广度优先搜索。

布线问题 定义移动方向的相对位移 设置边界的围墙 Position offset[4]; offset[0].row = 0; offset[0].col = 1; // 右 offset[1].row = 1; offset[1].col = 0; // 下 offset[2].row = 0; offset[2].col = -1; // 左 offset[3].row = -1; offset[3].col = 0; // 上 定义移动方向的相对位移 设置边界的围墙 for (int i = 0; i <= m+1; i++) grid[0][i] = grid[n+1][i] = 1; // 顶部和底部 for (int i = 0; i <= n+1; i++) grid[i][0] = grid[i][m+1] = 1; // 左翼和右翼

布线问题 找到目标位置后,可以通过回溯方法找到这条最短路径。 for (int i = 0; i < NumOfNbrs; i++) { nbr.row = here.row + offset[i].row; nbr.col = here.col + offset[i].col; if (grid[nbr.row][nbr.col] == 0) { // 该方格未标记 grid[nbr.row][nbr.col] = grid[here.row][here.col] + 1; if ((nbr.row == finish.row) && (nbr.col == finish.col)) break; // 完成布线 Q.Add(nbr);} } 找到目标位置后,可以通过回溯方法找到这条最短路径。

0-1背包问题 算法的思想 首先,要对输入数据进行预处理,将各物品依其单位重量价值从大到小进行排列。 在下面描述的优先队列分支限界法中,结点的优先级由已装袋的物品价值加上剩下的最大单位重量价值的物品装满剩余容量的价值和。 算法首先检查当前扩展结点的左儿子结点的可行性。如果该左儿子结点是可行结点,则将它加入到子集树和活结点优先队列中。当前扩展结点的右儿子结点一定是可行结点,仅当右儿子结点满足上界约束时才将它加入子集树和活结点优先队列。当扩展到叶结点时为问题的最优值。

0-1背包问题 上界函数 // n表示物品总数,cleft为剩余空间 while (i <= n && w[i] <= cleft) { cleft -= w[i]; //w[i]表示i所占空间 b += p[i]; //p[i]表示i的价值 i++; } if (i <= n) b+=p[i]/w[i] * cleft; // 装填剩余容量装满背包 return b; //b为上界函数

0-1背包问题 while (i != n+1) { // 非叶结点 // 检查当前扩展结点的左儿子结点 Typew wt = cw + w[i]; if (wt <= c) { // 左儿子结点为可行结点 if (cp+p[i] > bestp) bestp = cp+p[i]; AddLiveNode(up, cp+p[i], cw+w[i], true, i+1);} up = Bound(i+1); // 检查当前扩展结点的右儿子结点 if (up >= bestp) // 右子树可能含最优解 AddLiveNode(up, cp, cw, false, i+1); // 取下一个扩展结点(略)} 分支限界搜索过程

最大团问题 1. 问题描述 给定无向图G=(V, E)。如果UV,且对任意u, vU有(u,v)E,则称U是G的完全子图。G的完全子图U是G的团当且仅当U不包含在G的更大的完全子图中。G的最大团是指G中所含顶点数最多的团。 下图G中,子集{1, 2}是G的大小为2的完全子图。这个完全子图不是团,因为它被G的更大的完全子图{1, 2, 5}包含。{1, 2, 5}是G的最大团。{1, 4, 5}和{2, 3, 5}也是G的最大团。

最大团问题 2. 上界函数 用变量cliqueSize表示与该结点相应的团的顶点数;level表示结点在子集空间树中所处的层次;用cliqueSize +n-level+1作为顶点数上界upperSize的值。 在此优先队列式分支限界法中,upperSize实际上也是优先队列中元素的优先级。算法总是从活结点优先队列中抽取具有最大upperSize值的元素作为下一个扩展元素。

最大团问题 3. 算法思想 子集树的根结点是初始扩展结点,对于这个特殊的扩展结点,其cliqueSize的值为0。 算法在扩展内部结点时,首先考察其左儿子结点。在左儿子结点处,将顶点i加入到当前团中,并检查该顶点与当前团中其它顶点之间是否有边相连。当顶点i与当前团中所有顶点之间都有边相连,则相应的左儿子结点是可行结点,将它加入到子集树中并插入活结点优先队列,否则就不是可行结点。 接着继续考察当前扩展结点的右儿子结点。当upperSize > bestn时,右子树中可能含有最优解,此时将右儿子结点加入到子集树中并插入到活结点优先队列中。

最大团问题 3. 算法思想 算法的while循环的终止条件是遇到子集树中的一个叶结点(即n+1层结点)成为当前扩展结点。 对于子集树中的叶结点,有upperSize=cliqueSize。此时活结点优先队列中剩余结点的upperSize值均不超过(≤)当前扩展结点的upperSize值,从而进一步搜索不可能得到更大的团,此时算法已找到一个最优解。否则还要找。

旅行售货员问题 1. 问题描述 某售货员要到若干城市去推销商品,已知各城市之间的路程(或旅费)。他要选定一条从驻地出发,经过每个城市一次,最后回到驻地的路线,使总的路程(或总旅费)最小。 路线是一个带权图。图中各边的费用(权)为正数。图的一条周游路线是包括V中的每个顶点在内的一条回路。周游路线的费用是这条路线上所有边的费用之和。 旅行售货员问题的解空间可以组织成一棵树,从树的根结点到任一叶结点的路径定义了图的一条周游路线。旅行售货员问题要在图G中找出费用最小的周游路线。

旅行售货员问题 2. 算法描述 算法开始时创建一个最小堆,用于表示活结点优先队列。堆中每个结点的子树费用的下界lcost值是优先队列的优先级。接着算法计算出图中每个顶点的最小费用出边并用minout记录。如果所给的有向图中某个顶点没有出边,则该图不可能有回路,算法即告结束。如果每个顶点都有出边,则根据计算出的minout作算法初始化。 算法的while循环体完成对排列树内部结点的扩展。对于当前扩展结点,算法分2种情况进行处理:

旅行售货员问题 2. 算法描述 1、首先考虑s=n-2的情形,此时当前扩展结点是排列树中某个叶结点的父结点。如果该叶结点相应一条可行回路且费用小于当前最小费用,则将该叶结点插入到优先队列中,否则舍去该叶结点。 2、当s<n-2时,算法依次产生当前扩展结点的所有儿子结点。由于当前扩展结点所相应的路径是x[0: s],其可行儿子结点是从剩余顶点x[s+1: n-1]中选取的顶点x[i],且(x[s],x[i])是所给有向图G中的一条边。对于当前扩展结点的每一个可行儿子结点,计算出其前缀(x[0:s], x[i])的费用cc和相应的下界lcost。当lcost<bestc时,将这个可行儿子结点插入到活结点优先队列中。

旅行售货员问题 2. 算法描述 算法中while循环的终止条件是排列树的一个叶结点成为当前扩展结点。当s=n-1时,已找到的回路前缀是x[0:n-1],它已包含图G的所有n个顶点。因此,当s=n-1时,相应的扩展结点表示一个叶结点。此时该叶结点所相应的回路的费用等于cc和lcost的值。剩余的活结点的lcost值不小于已找到的回路的费用。它们都不可能导致费用更小的回路。因此已找到的叶结点所相应的回路是一个最小费用旅行售货员回路,算法可以结束。 算法结束时返回找到的最小费用,相应的最优解由数组v给出。

旅行售货员问题 3. 算法举例 参见一个五结点的TSP实例。

电路板排列问题 算法描述 算法开始时,将排列树的根结点置为当前扩展结点。在do-while循环体内算法依次从活结点优先队列中取出具有最小cd值的结点作为当前扩展结点,并加以扩展。 首先考虑s=n-1的情形,当前扩展结点是排列树中的一个叶结点的父结点。x表示相应于该叶结点的电路板排列。计算出与x相应的密度并在必要时更新当前最优值和相应的当前最优解。 当s<n-1时,算法依次产生当前扩展结点的所有儿子结点。对于当前扩展结点的每一个儿子结点node,计算出其相应的密度node.cd。当node.cd<bestd时,将该儿子结点N插入到活结点优先队列中。

s=n-1的情况,计算出此时的密度和bestd进行比较。 电路板排列问题 算法描述 s=n-1的情况,计算出此时的密度和bestd进行比较。 do { // 结点扩展 if (E.s == n - 1) { // 仅一个儿子结点 int ld = 0; // 最后一块电路板的密度 for (int j = 1; j <= m; j++) ld += B[E.x[n]][j]; if (ld < bestd) { // 密度更小的电路板排列 delete [] bestx; bestx = E.x; bestd = max(ld, E.cd); }

电路板排列问题 算法描述 else { // 产生当前扩展结点的所有儿子结点 for (int i = E.s + 1; i <= n; i++) { BoardNode N; N.now = new int [m+1]; for (int j = 1; j <= m; j++) // 新插入的电路板 N.now[j] = E.now[j] + B[E.x[i]][j];

计算出每一个儿子结点的密度与bestd进行比较大于bestd时加入队列 电路板排列问题 算法描述 计算出每一个儿子结点的密度与bestd进行比较大于bestd时加入队列 int ld = 0; // 新插入电路板的密度 for (int j = 1; j <= m; j++) if (N.now[j] > 0 && total[j] != N.now[j]) ld++; N.cd = max(ld, E.cd); if (N.cd < bestd) { // 可能产生更好的叶结点 N.x = new int [n+1]; N.s = E.s + 1; for (int j = 1; j <= n; j++) N.x[j] = E.x[j]; N.x[N.s] = E.x[i]; N.x[i] = E.x[N.s]; H.Insert(N);} else delete [] N.now;} delete [] E.x;}

组合问题中使用分支限界法 第5章课堂练习用分支限界法完成 设有n件工作分配给n个人。将工作j分配给第i个人所需的费用为cij。试设计一个算法,为每个人都分配1件不同的工作,并使总费用达到最小。 设计一个算法,计算最佳工作分配方案,使总费用达到最小。

组合问题中使用分支限界法 第5章课堂练习用分支限界法完成 人员a 人员b 人员c 人员d 如何求得一个分配成本的上、下界呢? 工作1 2 3 4 人员a 人员b 人员c 人员d 如何求得一个分配成本的上、下界呢? 矩阵对角线、贪心算法求近似解?

批处理作业调度问题 1. 问题的描述 给定n个作业的集合J={J1,J2,…,Jn}。每一个作业Ji都有2项任务要分别在2台机器上完成。每一个作业必须先由机器1处理,然后再由机器2处理。作业Ji需要机器j的处理时间为tji,i=1,2,…,n;j=1,2。对于一个确定的作业调度,设是Fji是作业i在机器j上完成处理的时间。则所有作业在机器2上完成处理的时间和 称为该作业调度的完成时间和。批处理作业调度问题要求对于给定的n个作业,制定最佳作业调度方案,使其完成时间和达到最小。

批处理作业调度问题 2. 限界函数 在结点E处相应子树中叶结点完成时间和的下界是P192: 注意到如果选择Pk,使t1pk在k>=r+1时依非减序排列,S1则取得极小值(机器1没有空闲时间)。同理如果选择Pk使t2pk 依非减序排列,则S2取得极小值(机器2没有空闲时间) 。 这可以作为优先队列式分支限界法中的限界函数。

批处理作业调度问题 3. 算法描述 算法的while循环完成对排列树内部结点的有序扩展。在while循环体内算法依次从活结点优先队列中取出具有最小bb值(完成时间和下界)的结点作为当前扩展结点,并加以扩展。 首先考虑E.s=n的情形,当前扩展结点E是排列树中的叶结点。E.sf2是相应于该叶结点的完成时间和。当E.sf2 < bestc时更新当前最优值bestc和相应的当前最优解bestx。 当E.s<n时,算法依次产生当前扩展结点E的所有儿子结点。对于当前扩展结点的每一个儿子结点node,计算出其相应的完成时间和的下界bb。当bb < bestc时,将该儿子结点插入到活结点优先队列中。而当bb bestc时,可将结点node舍去。

当E.sf2<bestc时,更新当前最优值bestc和相应的最优解bestx 批处理作业调度问题 3. 算法描述 当E.sf2<bestc时,更新当前最优值bestc和相应的最优解bestx while (E.s <= n ) { if (E.s == n ) {// 叶结点 if (E.sf2 < bestc) { bestc = E.sf2; for (int i = 0; i < n; i++) bestx[i] = E.x[i];} delete [] E.x;}

当bb<bestc时,将儿子结点插入到活结点优先队列中 批处理作业调度问题 3. 算法描述 else { // 产生当前扩展结点的儿子结点 for (int i = E.s; i < n; i++) { Swap(E.x[E.s],E.x[i]); int f1,f2; int bb=Bound(E,f1,f2,y); if (bb < bestc ) { MinHeapNode N; N.NewNode(E,f1,f2,bb,n); H.Insert(N);} } delete [] E.x;} // 完成结点扩展 当bb<bestc时,将儿子结点插入到活结点优先队列中