第一篇 材料X射线衍射分析 第一章 X射线物理学基础 第二章 X射线衍射方向 第三章 X射线衍射强度 第四章 多晶体分析方法

Slides:



Advertisements
Similar presentations
酒店的类型 为了满足人们各种不同的 需要,就出现了各种类型的 酒店。. 十种分类方法 提出者: 英国旅游学家、萨里大学宾馆餐饮 与旅游系主任迈德利克教授 专著:《 宾馆业 》
Advertisements

A A A.
历尽九九八十一难, 唐僧四人终于到达天竺, 取得真经,完成任务。 四人想着难得到天竺一趟, 不如在此游览一番。
海南洋浦港区深水航道及岸滩整治工程 简 介 中交天航局洋浦工程项目经理部. 中交天津航道局有限公司 洋浦港是洋浦经济开发区的核心资源,对于开发区的腾飞起 着举足轻重的作用。 2008 年 4 月,胡锦涛总书记到洋浦经济开发区进行考察时指 出,洋浦港 “ 要积极参与中国 — 东盟自由贸易区建设和环北部湾区.
一、中国湿地面临的威胁 目前,湿地污染严重,湖泊 富营养化问题突出。随着社 会经济的快速发展,湿地污 染在很长时期内依然严重。 湿地污染 1.
盈泰盛世精选 - 华泰并购投资基金 宝蓄财富 - 产品部. 产品基本要素 产品名称盈泰盛世精选华泰并购投资基金 管理人北京恒宇天泽投资管理有限公司 托管人国信证券股份有限公司 发行规模 1.2 亿元,以实际募集规模为准 人数限制 200 人上限 投资标的本基金委托将主要投向于华泰瑞联二期并 购基金中心(有限合合)(以企业登记的.
46 交通运输设备 第一章 绪论 第二章 铁路运输设备 第三章 城市轨道交通设备 第四章 道路运输设备 第五章 水路运输设备 第六章 航空运输设备 第七章 管道运输设备 06: :57.
中興大學先進材料研究群 金屬材料 吳威德 國立中興大學材料工程與科學系. 中興大學先進材料研究群 重量輕(比重約 2.7 g/cm 3 ) 塑性加工性良好(富延展性) 熱傳導度高 極具美觀之條件 添加其他合金元素可有優異的機械性質表現 使用範圍廣泛 鋁合金材料特性簡介.
命题取向: 技术 · 功能 · 立意 · 指向 刘东升 —— 在泰州市初中数学骨干教师 命题培训会议上的交流(上)
中共盘县发展和改革局党组主体责任落实情况报告
我们毕业了 毕业留念册 再见老师 姓名:黄巧灵 班级:六(1)班 毕业时间:2012年6月.
专题二:城市化与城乡规划 授课教师:周栋文.
2014年度部门决算 肇庆市财政局绩效评价科 2014年12月.
第二章 城市轨道交通系统的构成 城市轨道交通系统的分类 2.1 2.2 车辆与车辆段 2.3 轨道交通限界
延庆县“十二五”时期城乡基础设施 建设规划 2011年03月.
科技档案管理 主讲:王莉敏.
沉痛悼念郭可信院士.
§1.2.1 晶体学基础 固态物质 晶 体 非晶体 —— 规则排列,长程有序 第二节 原子的规则排列 —— 无规排列,长程无序.
8 企业信息管理的定量分析 第八讲 企业信息管理的定量分析 8.1 企业信息化水平的测评 8.2 企业信息管理绩效的测评.
公司简介 广东中人集团建设有限公司,于2003年6月由原中人企业(集团)所属的工程建设主营业改制成立,是完全按照现代企业制度规范运行的投资主体多元化的国有企业。注册资本3亿元。是广东省广晟资产经营有限公司管理的一级集团。 公司经国家建设部核定为一级建筑施工企业,拥有房屋建筑工程和公路工程施工两个总承包一级资质,建筑智能化工程、装饰装修工程、电信工程、爆破与拆除工程四个专业承包一级资质;拥有通信信息网络系统集成乙级资质,广东省安全技术防范系统设计、施工、维修资格证(一级),广东省有线广播电视台工程设计(安装
关于市场营销的分析 ——以九阳豆浆机为例 品牌经营——让每一个家庭都拥有一台九阳豆浆机 营销管理——采取文化、概念、网络等营销组合
《国民经济行业分类》 讲座 2011年10月.
  厦门市诗坂中学 陈苑然.
本章主要内容 工伤保险的功能与实施原则 工伤保险的范围与工伤认定 工伤保险基金 工伤的劳动能力鉴定 工伤保险的待遇 工伤预防与工伤康复
中國的首都—北京的古今著名建築物 聖公會置富始南小學—第一組 研習題目: 香港教育學院校友會 主辦 公民敎育委員會 贊助 香港教育城、
成才之路 · 语文 人教版 • 中国古代诗歌散文欣赏 路漫漫其修远兮 吾将上下而求索.
全腦快速學習方法體系簡介.
主要内容 1. 利用估值对债券组合估价的优势 2. 如何评估债券估值的合理性 3. 产业债的定价与估值.
《中华医学百科全书》 释文编写要点
不会宽容人的人, 是不配受到别人的宽容的。 贝尔奈.
复习回顾 a a×a a×a×a a a×a×a= a×a= 1.如图,边长为a厘米的正方形的面积 为 平方厘米。
第4章 分析化学中的质量保证与质量控制 4.1 概述 4.2 质量保证与质量控制 4.3 分析全过程的质量保证与质量控制
资产评估准则——不动产 讲 解 主讲人: 肖 力.
如何用合適的書報和新人一起追求 初信餵養-365 屬靈問答-500.
授课教师简历 刘付才,男,中学高级教师,亳州一中南校体 育教研组长,全国体育优质课一等奖获得者,华佗 五禽戏第五十八代传承人;长期从事五禽戏教学和 研究工作,参与创编了国家级课题“校园五禽戏”; 2014年全国学生运动会展示中获得优秀表演奖; 2015年指导的五禽戏传人进行的五禽戏教学获得全 国一等奖,编著的《华佗五禽戏之简易健身操》即.
第五冊 第九課 李 家 寶 朱天心.
洪涝灾害重点传染病的预防 江苏省疾病预防控制中心 汪华.
生物科簡報 主題: ※生長與發育※ 基因與遺傅※.
小 桔 灯 市场赢利能力与战略 主讲:杨贤耀.
北京汉邦高科数字技术股份有限公司 2015年年报交流.
电子病历系统应用水平 分级标准及案例解读 安徽省立医院 徐冬 黄山.
X射线粉末多晶衍射 ( X-ray powder polycrystalline Diffraction )
践行新时期广东精神 推进广东公路文化繁荣与发展 ——关于广东省公路文化建设与实践的思考
企业产品执行标准备案 登记办事规程 深圳市标准技术研究院 标准审查部.
3.2 微分和求导法则 函数的和、差、积、商的微分与求导法则 反函数的微分与求导法则 复合函数的微分与求导法则 基本求导法则与导数公式
把握命题趋势 ★ 科学应考 实现最后阶段的有效增分
第十二章 生产与费用循环审计.
用字母表示数 A=X+Y+Z 执教:建阳市西门小学 雷正明.
學生:蔡耀峻、許裕邦 座號:23號、21號 指導老師:黃耿凌 老師
材料科学基础 主讲: 胡晓君 Fundamentals of materials science
第七节 标点符号 目 录 一 标点符号的含义 二 标点符号的重要性 三 标点符号的作用 四 标点符号的变异形式 五 标点符号的灵活性
纳税指南 二○一一年第九期 主办:青岛市市北国家税务局.
3.用计算器求 锐角三角函数值.
1 試求下列各值: cos 137°cos (-583°) + sin 137°sin (-583°)。
1 在平面上畫出角度分別是-45°,210°,675°的角。 (1) (2) (3)
第十四章鋁及鋁合金 改進教學計畫編號:教改進-97C-003 計畫主持人:楊慶彬.
课题:已知三角函数值求角 sina tana y P 。 x P’ 。.
1-2 廣義角與極坐標 廣義角 1 廣義角的三角函數 2 廣義角三角函數的性質 3 極坐標 廣義角與極坐標 page.1/19.
第一章 函数与极限 第一节 函 数 一、函数的概念 二、函数的表示法 三、分段函数 四、反函数 五、初等函数 六、函数的基本性态
第四章 X射线衍射线束的强度(II) §4. 6 结构因子的计算 §4.7 粉末衍射 §4.8 多重性因子 §4.9 洛仑兹因子
第二章 三角函數 2-5 三角函數的圖形.
6. 續三角學 (a) 如何記住三角恆等式? 三角恆等式巧記Tips: 轉化角度為180o± 及360o± 的三角比。
3-3 錐度車削方法 一、尾座偏置車削法 二、錐度附件車削法 三、複式刀座車削法.
第六节 无穷小的比较.
提昇教師專業會議(華人社區) 「教師專業行為表現」專題討論 學生和家長眼中的教師專業行為 日期:2005年10月29日 地點:香港教育學院C-Lp-01室 主講 :香港教育工作者聯會 韓湛恩老師.
§12-5 同方向同频率两个简谐振动的合成 一. 同方向同频率的简谐振动的合成 1. 分振动 : 2. 合振动 : 解析法
三角比的恆等式 .
4.1 概 述 4.2 组合体视图绘制方法 4.3 组合体的尺寸标注 4.4 组合体视图的读图方法
三角 三角 三角 函数 已知三角函数值求角.
Presentation transcript:

第一篇 材料X射线衍射分析 第一章 X射线物理学基础 第二章 X射线衍射方向 第三章 X射线衍射强度 第四章 多晶体分析方法 第四章 多晶体分析方法 第五章 物相分析及点阵参数精确测定 第六章 宏观残余应力的测定 第七章 多晶体织构的测定

第六章 残余应力的测定 本章主要内容 第一节 物体内应力的产生和分类 第二节 X射线残余应力测定的基本原理 第三节 宏观应力测定方法 第六章 残余应力的测定 本章主要内容 第一节 物体内应力的产生和分类 第二节 X射线残余应力测定的基本原理 第三节 宏观应力测定方法 第四节 X射线宏观应力测定中的一些问题

第一节 物体内应力的产生与分类 残余应力是一种内应力 第一节 物体内应力的产生与分类 残余应力是一种内应力 内应力指产生应力的各种因素不复存在时,由于形变、体 积变化不均匀而残留在构件内部并自身保持平衡的应力 产生应力的各种因素不复存在指外加载荷去除、加工完成、 温度已均匀、相变过程中止等 目前公认的内应力分类方法是由德国的E. 马克劳赫于1979 年提出的, 将内应力按其平衡的范围分为三类,即第Ⅰ类 内应力、第Ⅱ类内应力和第Ⅲ类内应力

第一节 物体内应力的产生与分类 一、内应力的分类 第一节 物体内应力的产生与分类 一、内应力的分类 1) 第Ⅰ类内应力(Ⅰ) 指在物体宏观体积内存在并平衡的内 应力。当其被释放后,物体的宏观体积或形状将会变化 2) 第Ⅱ类内应力( Ⅱ) 指在数个晶粒范围内存在并平衡的内 应力。这种平衡被破坏时也会出现尺寸变化 3) 第Ⅲ类内应力( Ⅲ) 指在若干个原子范围内存在并平衡的 内应力。如各种晶体缺陷(空位、间隙原子、位错等),这 种平衡被破坏时不会产生尺寸的变化

第一节 物体内应力的产生与分类 二、内应力的分布 如图6-1所示,第Ⅰ类内应力是存在于各个晶粒的内应力 第一节 物体内应力的产生与分类 二、内应力的分布 如图6-1所示,第Ⅰ类内应力是存在于各个晶粒的内应力 在很多晶粒范围内的平均值,是较大体积宏观变形不协调的 结果 第Ⅱ类内应力是晶粒尺度范围内 应力的平均值,为各个晶粒或晶 粒区域之间变形不协调的结果 第Ⅲ类内应力是晶粒内局部内应 力相对第Ⅱ类内应力值的波动, 它与晶体缺陷形成的应变场有关 图6-1 内应力分布示意图

第一节 物体内应力的产生与分类 三、内应力的衍射效应 1) 第Ⅰ类内应力又称宏观应力或残余应力,其衍射效应使衍 射线位移 第一节 物体内应力的产生与分类 三、内应力的衍射效应 1) 第Ⅰ类内应力又称宏观应力或残余应力,其衍射效应使衍 射线位移 2) 第Ⅱ类内应力又称微观应力。其衍射效应主要引起衍射线 线形变化 3) 第Ⅲ类内应力又称晶格畸变应力或超微观应力等,名称尚 未同一,其衍射效应使衍射强度降低 4) 第Ⅱ类内应力是十分重要的中间环节,通过它才能将第Ⅰ 类内应力和第Ⅲ类内应力联系起来,构成一个完整的内应 力系统

第一节 物体内应力的产生与分类 四、内应力的产生 1) 宏观应力 图6-2是产生宏观应力的实例,框架和中间梁在焊接前无 应力;梁的两端焊接在 第一节 物体内应力的产生与分类 四、内应力的产生 1) 宏观应力 图6-2是产生宏观应力的实例,框架和中间梁在焊接前无 应力;梁的两端焊接在 框架上后,中间梁受拉 应力,两侧框架受压应 力,上下梁受弯曲应力 可见,残余应力是材料 内部宏观区域内平衡均 匀分布的应力 图6-2 宏观应力的产生 a) 焊接前 b) 焊接后

第一节 物体内应力的产生与分类 四、内应力的产生 2) 微观应力 由图6-3可示意说明了第Ⅱ类内应力的产生。在单向拉伸 第一节 物体内应力的产生与分类 四、内应力的产生 2) 微观应力 由图6-3可示意说明了第Ⅱ类内应力的产生。在单向拉伸 载荷作用下,由于A晶粒处于易滑移取向,当载荷超过临界 切应力时将发生塑性变形;而B晶粒仅发生弹性变形。载荷去 除后, B 晶粒变形要恢复,而A晶粒仅部分恢复,使B晶粒受 拉应力,晶粒A 受压应力,而形成晶粒间相互平衡的应力 图6-3 第Ⅱ类内应力的产生

第一节 物体内应力的产生与分类 五、内应力的检测 残余应力是一种弹性应力,它与构件的疲劳性能、耐应 第一节 物体内应力的产生与分类 五、内应力的检测 残余应力是一种弹性应力,它与构件的疲劳性能、耐应 力腐蚀能力和尺寸稳定性等密切相关,残余应力检测对于工 艺控制、失效分析等具有重要意义,主要方法有 1) 应力松弛法 即用钻孔、开槽或薄层等方法使应力松驰,用 电阻应变片测量变形以计算残余应力,属于破坏性测试 2) 无损法 即用应力敏感性的方法,如超声、磁性、中子衍射、 X射线衍射等。 3) X射线衍射法 属于无损法,具有快速、准确可靠、测量区 域小等优点,且能区分和测定三种不同的类别的内应力

残余应力测量标准 CB/T 3395-2013《残余应力测试方法 钻孔应变释放法》 SL 499-2010《钻孔应变法测量残余应力的标准测试方法》 GB/T 24179-2009《金属材料 残余应力测定 压痕应变法》 ASTM E837-13a《用钻孔应变仪法测残余应力标准试验》 GB/T 7704-2008《X射线应力测定方法》

第二节 X射线宏观应力测定的基本原理 一、基本原理 用X射线衍射法测定残余应力,首先测定应变,再借助 材料的弹性特征参量确定应力 对于理想的多晶体,在无应力状态下,不同方位的同族晶面 间距相等;当承受一定宏观应力 时,同族晶面间距随晶面 方位及应力大小发生有 规律的变化,如图6-4所 示,随晶面法线相对于 试样表面法线的夹角 增大,晶面间距d 增大 图6-4 应力与不同方位同族晶面间距的关系

第二节 X射线宏观应力测定的基本原理 一、基本原理 沿方位方位,某晶面间距d 相对于无应力(d0)时的变 化 (d - d0)/d0= d /d0 ,反映了由应力引起的晶面法线方向的 弹性应变  = d /d0 显然,晶面间距随方位的变化率与作用应力之间存在一定的 函数关系 因此,建立待测残余应力 与空间某方位上的应变 之间的 关系,是解决应力测量的问题的关键 物体自由表面的法线方向应力为零,当物体内应力沿垂直于 表面方向的变化梯度极小,而 X射线穿透深度又很小,测量 区域近似满足平面应力状态

第二节 X射线宏观应力测定的基本原理 二、测定宏观应力的坐标系 在平面应力状态下,建立坐标系如图6-5。图中O-XYZ是 主应力坐标系,为主应力(1, 2, 3)和主应变(1, 2, 3)方向; O-xyz为待测应力 (x )及y 和z 的方向; 3和z与试样法线ON平 行; 是 与1间的夹角 ON与  决定的平面称测量方向 平面, 是此平面上某方向的应 变,它与ON间夹角称为方位角 即 是衍射晶面法线ON与试样表 面法线ON间的夹角 图6-5 测定宏观应力的坐标系

第二节 X射线宏观应力测定的基本原理 三、应力测定公式 根据弹性力学原理,对于一个连续、均质、各向同性的 物体,在平面应力状态下,z =0,z =3,按图6-5所示的坐标 系,可以导出任一方向ON的应变为 (6-7) 将 对sin2 求导 (6-8) 即 (6-9) 式(6-9) 中,E为弹性模量,为泊松比;表明在平面应力状态 下, 与sin2 呈线性关系   sin2   sin2  = E 1+

第二节 X射线宏观应力测定的基本原理 四、应力常数K 由布拉格方程的微分式,d/d = - cot0 ,为常数时,  0 为无应力是的衍射角,  = (2-20)/2,则 = -(2-20)cot0/2, 对sin2 求导,并代入式(6-9)可得更实用的公式,式 (6-9) 中 变换为衍射角的形式,即 (6-11) 再将2 的单位由“弧度”换成“度”,则有 (6-12) 2 sin2

第二节 X射线宏观应力测定的基本原理 四、应力常数K 式(6-12) 表明,在平面应力状态下, 2 随 sin2 呈线 性关系,见图6-6。令式(6-12)中 (6-13a) (6-13b) 则 (6-13c) K称应力常数,它决定于待测材料 的弹性性质及所选衍射晶面的衍射 角(由晶面间距 d 和波长 决定) K M = 图6-6 2 - sin2 线性关系

a) 存在应力梯度 b) 存在三维应力 c) 存在织构 第二节 X射线宏观应力测定的基本原理 四、应力常数K M 是2 - sin2 直线的斜率。由于 K 是负值,若当M 0 时,应力为负,即压应力;当M  0时,应力为正,即拉应力 若 2 - sin2 关系失去线性,说明材料偏离平面应力状态, 三种非平面应力状态 的影响见图6-7 在样品测试范围存在 应力梯度、存在三维 应力状态或存在织构 等情况下,需采用特 殊的方法测算其残余 应力 图6-7 非线性2 - sin2 关系 a) 存在应力梯度 b) 存在三维应力 c) 存在织构

第二节 X射线宏观应力测定的基本原理 四、应力常数K 表中给出了几种材料的应力测试数据,供参考 几种材料的应力测试数据 材 料 点阵类型 点阵常数/Å 辐射源 { hkl } 2/() K/[MPa/()] -Fe BCC 2.8664 CrK CoK 211 310 156.8 161.4 -318.1 -230.4 -Fe FCC 3.656 CrK MnK 311 149.6 154.8 -355.35 -292.73 Al 4.049 222 420 156.7 162.1 -92.12 -70.36 Cu 3.6153 400 146.5 163.5 -245.0 -118.0 Ti HCP a 2.9504 c 4.6831 114 154.2 142.2 -171.6 -256.7 Ni 3.5238 CuK 157.7 155.6 -273.22 -289.39

第三节 宏观应力测定方法 由前述的测定原理可知,欲测定试样表面某确定方向的 残余应力 = KM,需按如下步骤进行 第三节 宏观应力测定方法 由前述的测定原理可知,欲测定试样表面某确定方向的 残余应力 = KM,需按如下步骤进行 1) 在测定方向平面内至少测出两个不同方位的衍射角2 2) 求出2 - sin2直线的斜率M 3) 根据测试条件取应力常数K 4) 将M和K代入式(6-13)计算残余应力 要确定和改变衍射晶面的方位,需利用某种衍射几何方式实 现。目前残余应力多在衍射仪或应力仪上测量,常用的衍射 几何方式有两种,同倾法和侧倾法

图6-8 同倾法(a)和侧倾法(b)衍射几何特点 第三节 宏观应力测定方法 一、同倾法 同倾法的衍射几何特点是测量方向平面和扫描平面相重 合,如图6-8a所示。测量方向平面是 ON、x 所在的平面;扫 描平面是入射线、衍射晶面法线(ON、 方向)和衍射线所 在平面。同倾法确定 的方式有两种 图6-8 同倾法(a)和侧倾法(b)衍射几何特点

第三节 宏观应力测定方法 一、同倾法 1) 固定 法 当ON与ON重合时,即 =0,计数管和试样以2:1的角 第三节 宏观应力测定方法 一、同倾法 1) 固定 法 当ON与ON重合时,即 =0,计数管和试样以2:1的角 速度转动,此时衍射晶面与试样表面平行,见图6-9a ;样品 绕衍射仪轴转动角, ON与ON间夹角为,见图7-9b 通过衍射几何条件设置直接 确定和改变衍射面方位 的 方法称固定 法 此法适用于较小尺寸的试样 在衍射仪上测定其宏观残余 应力 图6-9 固定 法 a)  = 0 b)  = 45

第三节 宏观应力测定方法 一、同倾法 2) 固定0 法 0 是入射线与试样表面法线ON间的夹角。固定0法待测 第三节 宏观应力测定方法 一、同倾法 2) 固定0 法 0 是入射线与试样表面法线ON间的夹角。固定0法待测 试样不动,通过改变X射线的入射方向获得不同的 方位,如 图6-10所示 按图中所示的衍射几何条 件,由0和 计算  = 0+ (90-  ) 此法适用于机械零件或大 型构件,多在专用的应力 测定仪上使用 图6-10 固定0 法 a) 0 = 0 b)  0= 45

第三节 宏观应力测定方法 一、同倾法 3) 晶面方位角 的选取 同倾法(固定 或0)选取晶面方位角的方式有两种 第三节 宏观应力测定方法 一、同倾法 3) 晶面方位角 的选取 同倾法(固定 或0)选取晶面方位角的方式有两种 a. 0- 45法(两点法)  或0 选取0和45进行测定,由两个数 据求2 - sin2直线的斜率M 此法适用于已知2 - sin2具有良好的线性关系或对测量精 度要求不高的场合 对于固定 的0- 45法, sin2 = sin2 45-sin2 0=0.5,则应 力计算公式简化为  = 2K2

n  (2  i sin2i ) -  sin2i  2  i 第三节 宏观应力测定方法 一、同倾法 3) 晶面方位角 的选取 b. sin2法 2 测量必然存在偶然误差,故两点法会影响测 量精度。为此取几个(n≥4)方位测量,再用作图法或最小 二乘法求出2 - sin2直线的最佳斜率M,根据式(6-13b) 得到直线方程 2 i= 2 =0+ Msin2i (6-15) 斜率M 满足偏差 vi 最小(见图6-11),按最小二乘法原则,其M 值为 (6-17) n  (2  i sin2i ) -  sin2i  2  i n  sin4i - ( sin2i )2 M =

第三节 宏观应力测定方法 一、同倾法 3) 晶面方位角 的选取 目前,sin2 法中4个方位角i和0i按如下方法选取,固 第三节 宏观应力测定方法 一、同倾法 3) 晶面方位角 的选取 目前,sin2 法中4个方位角i和0i按如下方法选取,固 定 法i常取0、25、35、45;固定0法可根据0值估算 合适的0i 用计算机处理数据,可以取更多 的测点,以提高M的精度 图6-11 确定2 - sin2 直线最佳斜率

第三节 宏观应力测定方法 二、侧倾法 同倾法中,  或0 的变化受 的限制, 的变化范围为 第三节 宏观应力测定方法 二、侧倾法 同倾法中,  或0 的变化受 的限制, 的变化范围为 0~ (见图6-9); 0的变化范围为0~ (2 - 90)(见图6-9) 由于测定衍射峰的全形需一定的扫描范围,且计数管无法接 收到平行于试样表面的衍射线。当工件形状复杂,如需测定 转角处的切向应 力,方位角的变 化将受到工件形 状的限制,见图 6-12 。由此而产 生侧倾法 图6-12 工件转角处的应力测定

第三节 宏观应力测定方法 二、侧倾法 与同倾法相比(比较图6-8a和b),侧倾法具有如下特点 侧倾法的测量方向平面与扫描平面垂直 第三节 宏观应力测定方法 二、侧倾法 与同倾法相比(比较图6-8a和b),侧倾法具有如下特点 侧倾法的测量方向平面与扫描平面垂直  角的变化不受衍射角的限制,只决定于待测试件的空间 形状。对于平面试样, 的变化范围理论上接近90 侧倾法确定 方位的方式属于固定 法 选取方位角的方式仍可采用两点法和sin2 侧倾法具有可测量复杂形状工件表面残余应力、且测量精度 高等优点。在专用的X射线应力仪上普遍配备了用于大型复 杂工件或构件应力测定的侧倾装置

第三节 宏观应力测定方法 二、侧倾法 如图6-13所示,侧倾 装置有两个轴,试样架可 绕水平轴转动,以实现方 位角 改变;试样架与计 第三节 宏观应力测定方法 二、侧倾法 如图6-13所示,侧倾 装置有两个轴,试样架可 绕水平轴转动,以实现方 位角 改变;试样架与计 数管绕垂直轴(衍射仪轴) 作 - 2 联动扫描,以测 定衍射角 图6-13 侧倾装置示意图

第三节 宏观应力测定方法 二、侧倾法 例:用侧倾法的sin2 法测定碳/铝复合丝覆铝层轴向应 第三节 宏观应力测定方法 二、侧倾法 例:用侧倾法的sin2 法测定碳/铝复合丝覆铝层轴向应 力的数据列于表6-1,用CuK辐射,测定铝{422}面 将表中数据代入式(6-17),得M = -0.3752,M 代入式(6-13c) 得, = KM = 65.2 MPa。 K的确定将在后面介绍 表6-1 sin2法应力测定数据 No  /() sin2 2 /() 2 sin2 /() sin4 1 2 3 4 25 35 45 0.1786 0.3290 0.5 137.49 137.45 137.40 137.30 24.5486 45.2046 68.65 0.0319 0.1082 0.25  1.0076 549.64 138.4032 0.3901

第四节 X射线宏观应力测定中的一些问题 一、定峰法 宏观应力的测定精度取决于2 角准确测量,相邻 方位 的2 变化仅在0.1甚至是0.01的数量级。峰位的准确测量可 采用以下定峰法 (一) 半高宽及1/8高宽法 若 K1和K2线重合, 采用半高宽法定峰, 图6-14a;若K1和K2 线分离,用K1线1/8 高宽定峰,图6-14b 此法适用于峰形较为 明锐的情况 图6-14 峰宽定峰 a) 半高宽法 b) 1/8高宽法

第四节 X射线宏观应力测定中的一些问题 一、定峰法 (二) 抛物线法 当峰形较漫散时,半高宽法容易引起较大误差,可用抛 物线法定峰,如图6-15所示。即将峰顶部位假定为抛物线, 设抛物线方程为, I = a0+ a1(2 ) + a2(2 )2 (6-18) 式中I为对应2 的强度; a0、a1、a2为常数。强度 最大值IP对应的衍射角 2P应满足dI/d(2 )=0, 即 a1+ 2a2(2P)=0,得 2P = - a1/ 2a2 (6-19) 2P即为峰位 图6-15 抛物线定峰 a) 三点抛物线法 b) 抛物线拟合法

第四节 X射线宏观应力测定中的一些问题 四、定峰法 (二) 抛物线法 1) 三点抛物线法 如图6-15a,在强度大于 85%IP 的峰顶处取三点,且使二 个2 相等,将测试值I1、 I2、I3及对应2 代入式(6-18),得 (6-20) 求解常数a1、a2 ,再代入式(6-19),求得其峰位2P为 (6-21) 2P = 21 + 2 2I2 -3I1+ I3 2( I3-I1)

第四节 X射线宏观应力测定中的一些问题 一、定峰法 (二) 抛物线法 2) 抛物线拟合法 为提高定峰精度,可取多点(n≥5),用曲线拟合法确定 峰位,如图6-15b。设各点 2i 处的强度最佳值为Ii ,满足式 (6-18),若强度实测值为Ii ,各点实测值与最佳值只差vi的平 方和为 按最小二乘法原则, , , ,求解常 数a1、 a2 ,代入式(6-19),可求得其峰位2P为

第四节 X射线宏观应力测定中的一些问题 一、定峰法 (二) 抛物线法 3) 强度修正 用抛物线法定峰时,需长时间定时计数或大计数定数计 数,以获取准确的强度值,且还需用下式进行修正 I = I / LPA (同倾法) I = I / LP (侧倾法) 式中, I为修正后的强度值; I为实测值; LP为角因数; A 为吸收因子(A = 1 - tan cos ) (6-23)

第四节 X射线宏观应力测定中的一些问题 二、应力常数 K 的确定 晶体具有各向异性,用某确定的晶面应变计算弹性应力 时,需测定选用晶面的弹性性质。方法如下: 用与被测材料相同的板材制成无残余应力的等强梁,将等强 梁在衍射仪或应力仪上施加已知且可改变的单向拉伸应力。 在单向拉伸条件下,根据式(6-8)有 (6-24) M 是  随sin2 变化的斜率,即 (6-25) 式(6-25)表明,M 随 也呈线性变化,见图6-16  sin2   M

a) 不同应力下-sin2 关系 b) M- 关系 第四节 X射线宏观应力测定中的一些问题 二、应力常数 K 的确定 将式(6-25)对求导 (6-26) 对等强梁上施加不同 应力,在测量方向平 面内测定不同方位的 应变,代入以上3式, 可计算出X射线弹性 常数 M  S2 2 图6-16 X射线弹性常数的测定 a) 不同应力下-sin2 关系 b) M- 关系

第四节 X射线宏观应力测定中的一些问题 二、应力常数K的确定 在单向拉伸条件下,根据式(6-7)有 (6-27) 当 = 0时, (6-28) =0 与 也呈线性关系,见图6-17, 斜率S1称弹性常数 (6-29) 由对应{hkl}晶面的弹性常数,X射线 波长及{hkl}晶面无应力时的衍射角 0,可计算应力常数 K   E    E    = 0 = 图6-17  =0 -  直线图

第四节 X射线宏观应力测定中的一些问题 应力误差将减小,2 的范围为143~163 ,或110~170 三、影响宏观应力测量精度的因素 (一) 衍射晶面的影响 选择原则是高角区的强衍射线,由2 测量精度引起的 应力误差将减小,2 的范围为143~163 ,或110~170 (二) 试样状态的影响 表面油污、氧化皮和加工痕迹等对应力 测定均有影响。特别是表面曲率(图6-18) 表面不同位置 连续变化,计算应力时, sin2 应取平均值,不考虑吸收时 (6-27) 图6-18 试样表面曲率的影响