Open topic: 在阅读资料JH中,作者是用 来定义NP的。请你说说两种定义方法是一致的吗?为什么?

Slides:



Advertisements
Similar presentations
Chapter 2 Combinatorial Analysis 主講人 : 虞台文. Content Basic Procedure for Probability Calculation Counting – Ordered Samples with Replacement – Ordered.
Advertisements

Which TV program is the video? 中国达人秀 China’s Got Talent 选秀节目 talent show talent n. 天资;天赋.
Moral Reasoning 道德推理 Moral Reasoning 台大哲學系 林火旺 教授
HPM&S 计算学科中的经典问题 ( 三 ) Great Ideas in Computer Science ( 3 ) 李波 weibo.com/bobbleee 计算机教学实验中心 高效能建模与仿真研究小组 西安交通大学 2012 年.
8 Click.
第五章 動詞 動詞用來表示一種動作 動詞有及物與不及物之分,及物動詞之後需要受詞,有的動詞甚至需要兩個受詞:一個直接受詞,一個間接受詞
-CHINESE TIME (中文时间): Free Response idea: 你周末做了什么?
On Irritability 英译汉.
自然運動 伽利略在運動學上的成就,奠定了牛頓動力學的基礎。伽利略成功的描述地球上物體的拋物運動,其主要基於兩個基本概念:
Chap 8 空间复杂度 可根据 提供的PPT素材+参考以前同学的报告, 修改成为有自己见解的讨论报告 建议: 底色用浅色(象牙白, 浅黄, 白色等) 适合色盲 色弱 观众 字体颜色选择余地大 在投影机 效果差时 也还能能看见.
Four-day week prediction
Welcome Welcome to my class Welcome to my class!.
“Unit 1 Encyclopaedias” Writing
专题讲座 武强中学外语组 制作:刘瑞红.
Module 5 Shopping 第2课时.
Population proportion and sample proportion
第四講:佛學概論由佛典選讀入手之一 《雜阿含經》、巴利經典選讀 授課教師:國立臺灣大學哲學系 蔡耀明 教授
! 温故知新 上下文无关文法 最左推导 最右推导 自上而下 自下而上 句柄 归约 移进-归约冲突 移进-归约分析 递归下降预测分析
關聯式資料庫.
樹狀結構 陳怡芬 2018/11/16 北一女中資訊專題研究.
初二英语写作课 课件 福建省闽清县第一中 王国豪
SAT and max-sat Qi-Zhi Cai.
加州協調護理計畫 洛杉磯縣.
Write a letter in a proper format
普通物理 General Physics 27 - Circuit Theory
Fundamentals of Physics 8/e 27 - Circuit Theory
Course 9 NP Theory序論 An Introduction to the Theory of NP
Dì二十課 看bìng Dì二十课 看bìng
XBRL未來發展趨勢 2009年12月 For information on applying this template onto existing presentations, refer to the notes on slide 3 of this presentation. The Input.
论题1-3 - 常用的证明方法及其逻辑正确性
第14章 竞争市场上的企业 上海杉达学院 国贸系.
本章大綱 2.1 The Limit of a Function函數的極限 2.2 Limit Laws極限的性質
Lexicographical order VS canonical order
人生對的地方 Suitable Place of life
Lesson 44:Popular Sayings
英语教学课件 九年级全.
Holiness is not an option 聖潔,非選擇也
句子成分的省略(1).
職業 Random Slide Show Menu
Chapter 5 Recursion.
Interactive Proofs 姚鹏晖
Chp.4 The Discount Factor
Version Control System Based DSNs
Guide to a successful PowerPoint design – simple is best
在Microsoft Access 下 建立資料庫
Chp.4 The Discount Factor
Unit 7 Lesson 20 九中分校 刘秀芬.
计算机问题求解 – 论题 算法方法 2016年11月28日.
爬蟲類動物2 Random Slide Show Menu
中考英语阅读理解 完成句子命题与备考 宝鸡市教育局教研室 任军利
Chp.4 The Discount Factor
取材 Tommy’s Window slideshow
计算机问题求解 – 论题1-5 - 数据与数据结构 2018年10月16日.
冀教版 九年级 Lesson 20: Say It in Five.
李宏毅專題 Track A, B, C 的時間、地點開學前通知
Polynomial Hierarchy 姚鹏晖
8Click.
What motivates a man to request that his own country be bombed?
何正斌 博士 國立屏東科技大學工業管理研究所 教授
计算机问题求解 – 论题 串匹配 2017年5月3日.
怎樣把同一評估 給與在不同班級的學生 How to administer the Same assessment to students from Different classes and groups.
Let Us Learn To Be Faithful
8 Click.
Creating Animated Apps: Canvas與ImageSprite 靜宜大學資管系 楊子青
Principle and application of optical information technology
Significant Figures 有效數字
Teenagers should be allowed to choose their own clothes.
Train Track and Children
When using opening and closing presentation slides, use the masterbrand logo at the correct size and in the right position. This slide meets both needs.
Presentation transcript:

Open topic: 在阅读资料JH中,作者是用 来定义NP的。请你说说两种定义方法是一致的吗?为什么?

两种NP的定义: TC: JH:

图灵机 图灵机,又称图灵计算、图灵计算机,是由数学家阿兰·麦席森·图灵 (1912~1954)提出的一种抽象计算模型,即将人们使用纸笔进行数学运算 的过程进行抽象,由一个虚拟的机器替代人们进行数学运算。 所谓的图灵机就是指一个抽象的机器,它有一条无限长的纸带,纸带分成了 一个一个的小方格,每个方格有不同的颜色。有一个机器头在纸带上移来移 去。机器头有一组内部状态,还有一些固定的程序。在每个时刻,机器头都 要从当前纸带上读入一个方格信息,然后结合自己的内部状态查找程序表, 根据程序输出信息到纸带方格上,并转换自己的内部状态,然后进行移动。

Deterministic and Non-deterministic Turing Machine In a deterministic Turing machine (DTM), the set of rules prescribes at most one action to be performed for any given situation. By contrast, a non-deterministic Turing machine (NTM) may have a set of rules that prescribes more than one action for a given situation. For example, a non-deterministic Turing machine may have both "If you are in state 2 and you see an 'A', change it to a 'B' and move left" and "If you are in state 2 and you see an 'A', change it to a 'C' and move right" in its rule set. A deterministic Turing machine has a transition function that, for a given state and symbol under the tape head, specifies three things: the symbol to be written to the tape, the direction (left, right or neither) in which the head should move, and the subsequent state of the finite control.

Deterministic and Non-deterministic Turing Machine A deterministic Turing machine has a transition function that, for a given state and symbol under the tape head, specifies three things: the symbol to be written to the tape, the direction (left, right or neither) in which the head should move, and the subsequent state of the finite control. A deterministic Turing machine has a transition function that, for a given state and symbol under the tape head, specifies three things: the symbol to be written to the tape, the direction (left, right or neither) in which the head should move, and the subsequent state of the finite control.

Deterministic and Non-deterministic Turing Machine A non-deterministic Turing machine (NTM) differs in that the state and tape symbol no longer uniquely specify these things; rather, many different actions may apply for the same combination of state and symbol. For example, an X on the tape in state 3 might allow the NTM to write a Y, move right, and switch to state 5, or to write an X, move left, and stay in state 3.

非确定性,可以直观地理解成“并行”。非确定性图灵机可以同时检查所有的计算分支(当然,计算分支数要是常数)。 可以想象一个计算树,非确定性图灵机在每个节点上,要转移状态的时候,可以同时检查后面的所有分支

两种NP的定义: TC: JH: 存在确定性的Verifier(多项式时间内验证)=>非确定性图灵机可以多项式时间验证

Equivalence of NP definitions To show this, first suppose we have a deterministic verifier. A nondeterministic machine can simply nondeterministically run the verifier on all possible proof strings (this requires only polynomially many steps because it can nondeterministically choose the next character in the proof string in each step, and the length of the proof string must be polynomially bounded). If any proof is valid, some path will accept; if no proof is valid, the string is not in the language and it will reject.

Equivalence of NP definitions Conversely, suppose we have a nondeterministic TM called A accepting a given language L. At each of its polynomially many steps, the machine's computation tree branches in at most a finite number of directions. There must be at least one accepting path, and the string describing this path is the proof supplied to the verifier. The verifier can then deterministically simulate A, following only the accepting path, and verifying that it accepts at the end. If A rejects the input, there is no accepting path, and the verifier will always reject.